Исследовательская работа с использованием спектрофотометром. Эковью спектрофотометр: описание, сферы применения

В режиме калибровки оператор с пульта вводит нормированные значения, приписанные данному калибровочному раствору, последовательно подает в кюветное отделение калибровочные растворы и проводит измерения.

В режиме анализа оператор устанавливает в кюветное отделение кювету с исследуемым раствором и проводит измерение.

Рис. 3.31. Обобщенная структурная схема одноканального колориметра. 1 - источник световой энергии; 2 - диафрагма; 3 - оптическая система; 4 - полосовой фильтр; 5 - оптическая система; 6 - кювета; 7 - фотоприемник; 8 - аналого-цифровой преобразователь; 9 - микро-ЭВМ; 10 - индикатор; 11 - пульт оператора;

12 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Рис. 3.32. Упрощенная оптическая схема однолучевого спектрофотометра. 1 - монохроматор (источник монохроматического излучения световой энергии на длине волны \\, 2 - кювета с исследуемым раствором; 3 - детектор (фотоприемник); Ф„ - падающий поток световой энергии; Ф - поток световой энергии, прошедший через раствор, поглощающий часть энергии

Рис. 3.33. Обобщенная структурная схема одноканального спектрофотометра.

1 - источник световой энергии (видимая область);

2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой анергии;

7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор;

16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Если у прибора отсутствует режим автоматической калибровки, то оператор строит граду-ировочный график зависимости оптической плотности и нормированных значений, приписанных калибровочным растворам.

Спектрофотометры

Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (V1S) света - от 380 до 750 нм, но и ближнего ультрафиолета (UV) - от 200 до 380 нм.

Последнее обстоятельство не исключает целесообразности выпуска недорогих спектрофотометров, не "имеющих источника ультрафиолетового излучения и работающих только в видимой части оптического диапазона волн.

Целью упомянутого и очень важного режима работы спектрофотометров - режима сканирования - является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектро-фотометрических исследованиях.

Основные компоненты однолучевого спектрофотометра показаны на рис. 3.32.

Принцип работы спектрофотометра. Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

Источник света. Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 100 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380- 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

Устройство и принцип работы спектрофотометра

На рис. 3.33 представлена обобщенная структурная схема спектрофотометра.

Рассмотрим взаимодействие и функциональное назначение элементов структурной схемы.

Имея общие представления о принципе измерения спектров поглощения, можно попытаться синтезировать наипростейший спектрофотометр. Схема такого прибора приведена на рис. 1.1.19.

Рис. 1.1.19.

Такая схема спектрофотометра называется однолучевой. Здесь для измерения поглощения в один и тот же монохроматический луч света необходимо поочерёдно пропускать через кювету с образцом и кювету с растворителем (контроль).

Современные модели спектрофотометров построены по двулучевому принципу. В этом типе спектрофотометров монохроматический луч периодически направляется вращающимся зеркалом по двум каналам, в один из которых помещается кювета с образцом, в другой - кювета с растворителем. Лучи проходят образец и контроль в противофазе, и разница в интенсивностях регистрируется фото- метрирующей системой с последующей автоматической записью спектра на бланке в координатах:

К таким спектрофотометрам относится двулучевой регистрирующий прибор Specord М-40, оснащенный микроЭВМ, с высокой степенью автоматизации процессов измерения и возможностью математической обработки результатов (рис. 1.1.20).

Спектрофотометр Specord М-40 предназначен для измерения спектров поглощения в широком диапазоне длин волн

Я (200-900 нм) или V (50.000-11.000 см ~ х). Волновое число v

есть величина, обратная длине волны Я, т.е. измеряется в см ~ х.

Если Я выражается в нм, то: В приборе используются два источника света - дейтериевая лампа для ультрафиолетового диапазона 200-400 нм (50.000-25.000 см" 1) и лампа накаливания для видимой и ближней инфракрасной области 400-900 нм (25.000-

11.000 см" 1). Оптика прибора рассчитана на работу во всём указанном диапазоне и собрана с использованием отражательной (зеркальной) техники (плоские зеркала, конденсоры, реплики и т.д.).

В ультрафиолетовой области используется принцип двойной мо- нохроматизации излучения дейтериевой лампы. Дифракционный двойной монохроматор, состоящий из предварительного и главного монохроматора, обеспечивает высокое качество монохроматизации ультрафиолетового света и уменьшение мешающего рассеянного излучения. При развертке спектра в видимой области в ход лучей предварительного монохроматора вводится плоское зеркало-экран, которое перекрывает лучи водородной лампы и направляет на входную щель главного монохроматора свет от лампы накаливания. Таким образом, в видимой области работает только главный монохроматор.

Рабочий диапазон ультрафиолетовых решеток в предварительном и главном монохроматоре (1302 штр/мм) находится в пределах 54.000-28.000 см" 1 , а решётки видимого диапазона (651 штр/мм) в пределах 31.000-11.000 см" 1 . Переключение решеток от работающих в ультрафиолетовой области к предназначенным для видимой области происходит автоматически при волновом числе у =30.000 см" 1 . Обе решетки относятся к решеткам первого порядка (см. выше), а для предотвращения попадания световых лучей спектров более высоких порядков при работе в видимом диапазоне автоматически вводятся светофильтры (при переключении светофильтров развертка спектра на время также автоматически прекращается).

В спектрофотометре Specord М-40 предусмотрено регулирование ширины щелей. Входная и выходная щели монохроматора жёстко связаны между собой и управляются шаговыми двигателями от ЭВМ. Возможны два режима управления щелями:

  • - с постоянной шириной щели при записи всего спектра,
  • - с переменной шириной щели, величина которой может изменяться в ходе записи спектра.

Величину спектральной ширины щели можно задавать, выбирая фиксированные значения из набора щелей от 10 см" 1 до 200 см" 1 . Развертка спектра по длинам волн в спектрофотометре Specord М-40 производится шаговыми двигателями, работа которых контролируется встроенной в прибор микроЭВМ. Таким образом, измерение спектра производится по точкам - точно фиксированным длинам волн. Выбор ширины щелей и шага (числа точек) производится в зависимости от особенностей объекта и цели исследования.

Монохроматический луч заданной спектральной ширины (интервала с известной ^Кпшструм .) модулируется и затем направляется


Рис. 1.1.20.

1. Источник ультрафиолетового излучения - дейтериевая лампа; 2. Источник видимого и инфракрасного излучения - лампа накаливания; 3. Коллиматор предварительного монохроматора (вогнутое зеркало); 4. Конденсор лампы накаливания (вогнутое зеркало); 5. Дифракционная решетка предварительного монохроматора; 6. Плоское поворотное зеркало; 7,10. Входная (7) и выходная (10) щели главного монохроматора; 8. Коллиматоры главного монохроматора (вогнутые зеркала); 9. Дифракционная решетка главного монохроматора Эберта (а - реплика для ультрафиолетовой области, б - реплика для видимой и инфракрасной области); 11. Модулятор; 12. Вогнутые тороидальные зеркала; 13. Разделяющее попеременно два луча поворотное зеркало на оси мотора; 14. Плоское поворотное зеркало; 15. Кювета с образцом; 16. Кювета с контролем; 17. Фотоумножитель (ФЭУ).

поочерёдно с помощью вращающегося плоского зеркала с прорезями (13, рис. 1.1.20) в канал с объектом или в канал с растворителем (контролем). Камера для объекта разделена на два отделения. Большой отсек предназначен для работы с прозрачными растворами, а малый - для рассеивающих свет объектов.

Прошедшие через образец и контроль лучи поочерёдно в противофазе попадают на фотоумножитель, генерируя (если есть поглощение света в образце) переменный фототок (рис. 1.1.21). Если интенсивность лучей одинакова (поглощение двух кювет одинаково), то переменный фототок на выходе ФЭУ равен 0.


Рис. 1.1.21.

В противном случае возникает переменный ток, который усиливается. Сигнал обрабатывается, и результат измерения (пропускание

или оптическая плотность ) регистрируется на

бланке самописца спектрофотометра. Весь процесс измерения спектра и его воспроизведение осуществляется под контролем мик- роЭВМ, встроенной в прибор. Компьютеризация спектрофотометра дает возможность использования программ оптимального измерения и последующей математической обработки результатов, а также сохранения в памяти ЭВМ полученной информации в постоянной готовности для обработки.

Спектрофотометрия — это метод, с помощью которого измеряют химический состав изучаемого вещества. Спектрофотометр пропускает через образец поток световых лучей любой длины и диапазона.

Образцом в данном случае выступает раствор изучаемого вещества в жидкости, размещенный в прозрачном для излучения кювете. Причем спектрофотометры выпускаются как с наличием источника УФ - лучей, инфракрасных лучей, так и работающие в оптическом диапазоне, который виден человеку.

С помощью этого прибора измеряют отношение двух потоков оптического излучения. Один поток падает на исследуемый образец, а другой поток испытывает какое - либо взаимодействие с данным образцом. Спектрофотометр производит измерения для различных длин волн оптического излучения. В результате этих операций получается спектр отношений потоков. Данные приборы используются в медицине и в промышленной отрасли для контроля технологических процессов. С помощью спектрофотометра определяют состав и наличие примесей в различных жидкостях, таких как медицинские растворы, вода, продукты нефтяной и химической промышленности, продукция лакокрасочного производства.

Как устроен спектрофотометр

Оптическая схема простейшего спектрофотометра приведена на рисунке. В качестве источников излучения в приборах наиболее широко используются газоразрядная водородная лампа и вольфрамовая лампа накаливания.

Газоразрядная водородная лампа обеспечивает сплошной спектр в ультрафиолетовой области и особенно удобна для измерений от 200 до 350 нм.

Вольфрамовая лампа накаливания используется для работы в ближней ультрафиолетовой области, видимой и ближней инфракрасной области, т. е. в пределах от 320 до 3000 нм. Ртутные лампы обеспечивают очень высокую интенсивность в ультрафиолетовой и видимой областях, давая интенсивную линию спектра ртути и сплошное излучение. Ртутные лампы необходимо нагревать в течение 15 минут, прежде чем они начнут давать постоянное излучение.

Недостатком является высокая температура, которую ртутная лампа приобретает при работе.

Ксеноновые разрядные лампы применяются в ряде приборов для измерений в области от 200 до 900 нм.


Монохроматор
- приспособление для изолирования очень узкой полосы излучения из источника света. Смешанное излучение проходит через щель в монохроматор, в котором луч разделяется на спектр при помощи призмы или дифракционной решетки. Этот спектр фокусируется на выход щели. Путем вращения призмы или дифракционной решетки можно выделить определенную часть спектра, которая через щель направляется в кюветное отделение, где находится раствор исследуемого вещества.

Классификация спектрофотометров

Учитывая назначение и конструкцию спектрофотометров, их можно разделить на три группы: простые, двуволновые, приборы с фотодиодной решеткой.

Эти приборы могут быть стационарными (самый популярный - ). Такие виды эксплуатируются только в лабораториях для проведения различных технологических процессов.

Второй вид спектрофотометров — портативный, который предназначен для работы в полевых условиях и в различных помещениях. Портативные приборы могут быть применены для небольшого узкого круга применяемых методик измерений.

Современный рынок лабораторного оборудования большим ассортиментом спектрофотометров. Они отличаются друг от друга строением оптических систем, функциональными возможностями и, конечно, .

Выбирая такой прибор необходимо определиться с ценой и моделью, которая поможет быстро и качественно решить поставленные задачи.

Спектрофотометрия – экспериментальный метод, который позволяет измерить концентрацию растворенных веществ по количеству поглощаемого раствором света. Высокая эффективность данного метода обусловлена тем, что различные соединения по-разному поглощают свет с той или иной длиной волны. По количеству прошедшего сквозь раствор света можно выяснить, какие соединения присутствуют в растворе, и определить их концентрации. В лабораториях для этого используют специальный прибор – спектрофотометр.

Шаги

Часть 1

Подготовка образцов

    Включите спектрофотометр. Большинству спектрофотометров необходим предварительный разогрев – это помогает получить более точные результаты. Включите прибор и подождите хотя бы 15 минут, прежде чем приступать к измерениям.

    • Используйте время разогрева прибора для подготовки образцов.
  1. Помойте кюветы и пробирки. При выполнении лабораторной работы в школе вам могут выдать одноразовые пробирки, которые не нужно чистить. Если же вы используете многоразовые кюветы или пробирки, перед работой их необходимо как следует вымыть. Тщательно помойте всю посуду деионизированной водой.

    Залейте в кювету требуемое количество исследуемой жидкости. Максимальный объем некоторых кювет составляет 1 миллилитр (мл), в то время как пробирки могут быть рассчитаны на 5 миллилитров. Для получения точных результатов необходимо, чтобы луч лазера проходил через жидкость и не задевал пустую часть емкости.

    Приготовьте контрольный раствор. Контрольный, или холостой раствор представляет собой чистый растворитель, без присутствующих в других образцах примесей. Например, если вы растворили в воде соль, в качестве холостого раствора следует взять простую воду. Если при этом вы окрасили воду в красный цвет, в качестве холостого раствора также необходимо взять красную воду. Холостой раствор должен иметь тот же объем, что и исследуемые растворы, и его следует налить в такую же емкость.

    Протрите наружную поверхность кюветы. Прежде чем поместить кювету в спектрофотометр, необходимо убедиться, что она чистая, иначе частицы грязи и пыли могут исказить результаты. Протрите безворсовой тканью стенку кюветы снаружи, чтобы удалить возможные капли воды и частички пыли.

    Часть 2

    Проведение эксперимента
    1. Выберите и задайте длину волны света для анализа образцов. Для большей точности используйте свет с одной длиной волны (монохроматический свет). Необходимо выбрать такую длину волны, чтобы свет поглощался одним из соединений, которое предположительно входит в состав исследуемого раствора. Выставьте выбранную длину волны на спектрофотометре в соответствии с инструкциями по эксплуатации прибора.

      Откалибруйте прибор по холостому раствору. Поместите в держатель спектрофотометра кювету с холостым раствором и закройте крышку прибора. Аналоговые спектрофотометры снабжены шкалой со стрелкой, угол отклонения которой определяется интенсивностью прошедшего света. В случае холостого раствора стрелка отклонится вправо. Запишите показания прибора на случай, если они понадобятся вам в дальнейшем. Затем переведите стрелку в нулевое положение с помощью ручки настройки (при этом холостой раствор должен по-прежнему оставаться в приборе).

      • Цифровые спектрофотометры вместо шкалы снабжены дисплеем, и их можно откалибровать таким же образом. Установите ноль для холостого раствора с помощью кнопок настройки.
      • Калибровка сохранится и после того, как вы достанете холостой раствор. При работе с остальными образцами свет, который поглощается беспримесным растворителем, будет автоматически вычитаться из показаний прибора.
    2. Достаньте кювету с холостым раствором и проверьте калибровку. В отсутствие холостого раствора стрелка должна остаться на нулевой отметке (или на дисплее должен сохраниться ноль). Вновь поместите в прибор холостой раствор и убедитесь в том, что спектрофотометр по-прежнему показывает ноль. При правильной калибровке прибор должен показывать ноль и с холостым раствором, и без него.

      • В случае ненулевых показаний прибора повторите калибровку с холостым раствором.
      • В случае дальнейших проблем попросите о помощи или обратитесь к обслуживающему прибор техническому персоналу.
    3. Измерьте оптическую плотность экспериментального образца. Достаньте из прибора холостой раствор и поместите в него исследуемый образец. Подождите примерно 10 минут, пока стрелка не успокоится или пока не перестанут изменяться цифры на дисплее. После этого запишите значение коэффициента пропускания и/или оптической плотности.

      • Чем больше света проходит через образец, тем меньше света он поглощает. Обычно записывают значения оптической плотности, которые имеют вид десятичной дроби, например 0,43.
      • Повторите измерения для каждого образца по меньшей мере три раза и найдите средние значения. Таким образом вы получите более точные результаты.
    4. Повторите эксперимент для других длин волн. Образец может содержать несколько неизвестных примесей, которые поглощают свет при разной длине волны. Чтобы исключить неопределенность, повторите измерения с шагом 25 нанометров для всего спектра. Это позволит вам определить другие соединения, которые входят в состав изучаемого раствора.

В этой поговорим о принципах работы спектрофотометров; о том, где их применяют и как выбрать спектрофотометр, если он вам нужен.

Принцип работы спектрофотометров

Методы спектрометрии основаны на измерении степени поглощения (отражения) монохроматического светового потока - в этом случае влияние посторонних факторов сведено к минимуму, увеличивается чувствительность и точность приборов.

Различают две основные конструкции спектрофотометров: однолучевые и двухлучевые. В двухлучевом спектрофотометре один луч падает на исследуемый образец, а второй - на эталон. В однолучевом приборе измерения проводятся с помощью коэффициентов коррекции. Двухлучевые спектрофотометры более точные, позволяют добиться высокой степени повторяемости результатов, они менее чувствительны к изменению параметров окружающей среды.

Применение спектрофотометров

Спектрофотометры применяются, в основном, для:
- определения концентрации веществ в медицине, биологических исследованиях, в аналитической химии, фармацевтике;
- измерения в растворах оптической плотности и скорости ее изменения;
- распознавания веществ, для определения чистоты веществ (наличия примесей);
- изучения химического строения и состава веществ, химических реактивов , различных образцов;
- оценки цвета в полиграфии, в промышленности (лакокрасочной, текстильной, химической, пищевой, косметической и т. п.);
- спектрального анализа в научных исследованиях, в астрономии, физике, биологии.

Как выбрать спектрофотометр

Выбирая спектрофотометр, нужно заранее определить для себя основные параметры, необходимые для решения стоящих задач. Все приборы можно разделить на две большие группы:
- портативные;
- стационарные.

Портативные обладают небольшим весом и компактными размерами, их можно брать с собой на выезд, они подходят для оперативных измерений на производстве. Стационарные приборы предназначены для установки в лабораториях, они позволяют производить более точные и сложные измерения. Подобные спектрофотометры могут иметь интерфейс для подсоединения к компьютеру, для архивирования, распечатки, обработки данных.

Из технических параметров, существенных для химического анализа*, следует учесть:
- спектральный диапазон;
- точность выбора длины волны;
- характеристику повторяемости результатов (величина, указывающая близость серии результатов изучения одного и того же образца по одной и той же методике, одним лаборантом, на одном приборе, в одной лаборатории);
- функциональность прибора, возможность проведения тех или иных измерений, получения результатов в удобном виде;
- стоимость (зависит от функциональности и величины воспроизводимости результатов);
- габариты и вес, если речь идет о мобильном устройстве;
- габариты отделения для образцов, если речь идет о стационарном устройстве; оно должно подходить для ваших образцов.

Дополнительно можно принять во внимание наличие в штатной комплектации различных аксессуаров, например, например, кювет и чашек Петри.

Обращаем ваше внимание, что в магазине «ПраймКемикалсГрупп» вы можете купить спектрофотометр КФК-3-01-«ЗОМЗ» - функциональное оборудование по доступной цене. Также в продаже чашки Петри , другая лабораторная посуда и техника. Имеется доставка.
s______________
* Для цветометрических измерений существенными являются другие параметры спектрофотометра.