Диод шоттки в электронных схемах. Диод шоттки Как сделать диод шоттки

Диоды Шоттки или более точно - диоды с барьером Шоттки - это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n -переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт - тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла - станут накапливаться объемные заряды - положительные в полупроводнике и отрицательные - в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения - регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе - Фп/п.

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является, который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от , значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки - именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает - в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004) - Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А - пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.



STPS3045CW - Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.


Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Шоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
Ультрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
Ультрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
Ультрафаст SR504 5A 40V Vf=0.57
Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Шоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
Ультрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Шоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Шоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Шоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Шоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Шоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Шоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
Ультрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:



Также выпускаются , которые можно использовать например в БП ламповых усилителей и другой аппаратуры с повышенным питанием. Список приведён ниже:



Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Диод Шоттки еще одна разновидность типичного полупроводникового диода , его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.

На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.


Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом.

Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе , то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.

Достоинства


Падение напряжения на диоде при прямом включении всего 0,2-0,4 вольт, в то время, как на типовых кремниевых диодах, этот параметр составляет 0,6-0,7 вольта. Такое низкое падение напряжения на полупроводнике, при прямом включении, свойственно только диодам Шоттки с обратным напряжением максимум десятки вольт, но в случае повышения уровня приложенного напряжения, падение напряжения на диоде Шоттки уже сопоставимо с кремниевым диодом, что достаточно сильно ограничивает использование диодов Шоттки в современной электронике.
Теоретически любой диод Шоттки может обладает малой емкостью барьера. Отсутствие в явном виде классического p-n перехода позволяет существенно увеличить рабочую частоту прибора. Этот параметр нашел широкое применение в производстве интегральных микросхем, где диодами Шоттки шунтируют переходы транзисторов, используемых в роле логических элементов. В силовой электронике важен другой параметр диодов Шоттки, а именно, низкое время восстановления дает возможность использовать силовые выпрямители на частоты от сотни кГц и выше. Например, радиокомпонент MBR4015 (на 15 В и 40 А), используется для выпрямления ВЧ напряжения, а его время восстановления всего 10 кВ/мкс.
Благодаря указанным выше положительным свойствам, выпрямители построенные на диодах Шоттки отличаются от выпрямителей на стандартных диодах более низким уровнем помех, поэтому их применяют в аналоговых вторичных блоках питания.

Минусы


В случае краткосрочного превышении допустимого уровня обратного напряжения диод Шоттки выходит из строя, в отличие от типовых кремниевых диодов, которые просто перейдут в режим обратимого пробоя, при условии, что рассеиваемая мощность кристалла не выше допустимых значений, а после снижения напряжения диод полностью восстанавливает свои характеристики.
Диодам Шоттки свойственны более высокие значения обратных токов, увеличивающиеся с ростом температуры кристалла и в случае неудовлетворительных условий работы теплоотвода при работе с высокими токами приводят к тепловому пробою радиокомпонента.

Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного.

Сгоревший диод Шоттки одна из наиболее типовых неисправностей при. У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты.

В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них.

Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.

Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание.

Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.

Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

  • Конструкция
  • Миниатюризация
  • Использование на практике

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:


Но иногда можно увидеть и такое обозначение:


Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.


ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.


Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной "фишкой" диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод . Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (I F(AV) ) – 1 ампер и обратное напряжение (V RRM ) от 20 до 40 вольт. Падение напряжения (V F ) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop ) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36 , который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два "дохлых" состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор "подёргивается" и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом . Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на "утечку". Если проводить проверку мультиметром DT-830 в режиме "диод", то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе "20кОм" обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

В электроустановках, как вы знаете, имеет огромное применение силовые полупроводниковые приборы — промышленные диоды. Это стабилитроны, диоды Зенера и гость нашей статьи —

Что такое диод Шоттки(наречен в честь немецкого физика Вальтера Шоттки), могу сказать кратко – он отличается от других диодов принципом работы основанный на выпрямляющем контакте металл – полупроводник. Этот эффект может получиться в двух случаях: для диода n-типа –если в полупроводнике работа выхода меньше чем металла, для диода р-типа – если работа выхода полупроводника больше чем металла. Наибольшей популярностью пользуются диоды Шоттки вида n-типа из-за высокой подвижностью электронов, сравнимо с подвижностью дырок.

Рис 1. Вид диода Шоттки в разрезе

Плюсы и минусы

Для сравнения берем биполярный диод. Как говорится: сразу в огонь, начнем с недостатка, а он считаю самый важный. У диодов Шоттки огромный обратный ток.

С минусами все, теперь хорошее, плюсы.

  • Во-первых, считаю, что диоды Шоттки являются наиболее быстродействующими. Так же можно учитывать плюсом прямое падение напряжения при таком же токе на несколько десятых вольта меньше как у биполярных.
  • Во-вторых, можно добавить, что у данных диодов не накапливается не основные носители заряда, так как ток в полупроводнике проходит по принципу дрейфа. Про этот механизм расскажу в следующих статьях.

Огромное количество диодов Шоттки изготавливаются по планарной технологии с эпитаксиальным n-слоем, на поверхности которого создают оксидный слой, в котором образуются окна для формирования барьера. В роли последнего используются такие металлы: молибден, титан, платина, никель. По всей площади контактной области формируется кольцо кремния р-типа( рис 2 а ), которое будет служить уменьшением краевых токов утечки.

Рис 2 а.,б.

Работает «охранное» кольцо таким способом: степень легирования и размеры р-области проектируется таким образом, чтобы при перенапряжениях на приборе ток пробоя протекал именно через р-n-преход, а не через контакт Шоттки.

Здесь мы видим, что области р-типа сформированы непосредственно в активной области перехода Шоттки. Поскольку в такой конструкции имеется два типа перехода – переход металл-кремний и р-n-переход,- по своим свойствам и характеристикам она занимает промежуточное положение. Благодаря переходу Шоттки, она имеет минимальные токи утечки, а из наличия р-n-перехода — большие напряжения при прямом смещении.

Также конструкция, приведенная на рисунке 2 б , обладает повышенной устойчивостью к действию разряда статического электричества. Это следует из принципа работы, который заключается в том, что объемные токи утечки замыкаются на обедненной области р-n-перехода, тем самым уменьшая электрическое поле на границе раздела металл-полупроводник при прямом смещении, области пространственного р-n-переходов имеют минимальную ширину, и вольт-амперная характеристика (ВАХ) рис.3 диода близка к ВАХ типовой конструкции диода. При обратных же напряжениях область обеднения р-n-перехода увеличивается по мере увеличения прикладываемого напряжения и ОПЗ соседних р-n-переходов смыкается, образуя своего рода «экран», защищающий контакт Me- Si высоких напряжений, которые могут вызвать большие объемные токи утечки.

Рис.3 Вольт-амперная характеристика диода Шоттки

Принцип действия

Вольт-амперная характеристика диода Шоттки, смещенного в прямом направлении, определяется формулой

которая по форме совпадает с ВАХ р-n-перехода, однако ток J 0 гораздо выше, чем J s (типовые значения диода Шоттки Al- Si при 25 С J 0 = 1.6 *10 -5 А/см 2 , а для р- n-перехода при N d = N a =10 16 А/см 3 , J s =10 -10 А/см 2 )

При прямом смещении диода Шоттки к прямому падению напряжения на переходе добавляется напряжение на самом полупроводнике. Сопротивление этой области содержит две составляющие: сопротивление слаболегированной эпитаксиальной пленки (n —) и сопротивление сильнолегированной подложки (n +). Для диода Шоттки с низким допустимым напряжением (менее 40 В) эти два сопротивления оказываются одного порядка, поскольку n + область значительно длиннее (n —) области (примерно 500 и 5 мкм, соответственно). Общее сопротивление кремния площадью 1 см 2 составляет в таком случае от 0,5 до 1 мОм, создавая падение напряжения в полупроводнике от 50 до 100 мВ при токе 100А.

Если диод Шоттки выполняется на допустимое обратное напряжение более 40 В, сопротивление слаболегированной области возрастает очень быстро, поскольку для создания более высокого напряжения требуется более протяженная слаболегированная область и еще более низкая концентрация носителей. В результате оба фактора приводят к возрастанию сопротивления (n —) области диода.

Конструкторско-технологические приемы.

Большое сопротивление является одной из причин того, что обычные кремниевые диоды Шоттки не выполняются на напряжение свыше 200 В.

Для снижения обратных токов утечки, повышение устойчивости к разрядам статического электричества используются различные приемы.

Так, для снижения токов утечки и выхода годных диодов Шоттки в окне под барьерный слой делают углубление 0,05 мкм, а после формировании углубления в эпитаксиальном слое проводят отжиг при температуре 650 град. В среде азота в течении 2-6 часов.

Снижение обратных токов молибденовых диодов Шоттки добиваются путем создания геттерирующего слоя перед нанесением эпитаксиального слоя полированием обратной стороны подложки свободным абразивом, а после металлизации электрода Шоттки удаляют геттерирующий слой.

При выдерживании оптимальных соотношений между шириной и глубиной охранного кольца также можно существенно обратные токи утечки и повысить устойчивость к статики.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Диод Шоттки – это полупроводниковый электрический выпрямительный элемент, где в качестве барьера используется переход металл-полупроводник. В результате приобретаются полезные свойства: высокое быстродействие и малое падение напряжения в прямом направлении.

Из истории открытия диодов Шоттки

Выпрямительные свойства перехода металл-полупроводник впервые замечены в 1874 году Фердинандом Брауном на примере сульфидов. Пропуская ток в прямом и обратном направлении, он отметил разницу в 30%, что в корне противоречило известному закону Ома. Браун не смог объяснить происходящего, но, продолжив исследования, установил, что и сопротивление участка пропорционально протекающему току. Что также выглядело необычно.

Опыты повторились физиками. К примеру, Вернер Сименс отметил похожие свойства селена. Браун установил, что свойства конструкции проявляются наиболее ярко при небольшом размере контактов, приложенных к кристаллу сульфида. Исследователь применял:

  • подпружиненную проволоку с давлением 1 кг;
  • ртутный контакт;
  • металлизированную медью площадку.

Так на свет появился точечный диод, в 1900 году помешавший нашему соотечественнику Попову взять патент на детектор для радио. В собственных работах Браун излагает исследования марганцевой руды (псиломелана). Прижав контакты к кристаллу струбциной и изолировав губки от токонесущей части, учёный получил превосходные результаты, но применения эффекту в то время не нашлось. Описав, необычные свойства сульфида меди, Фердинанд положил начало твердотельной электронике.

За Брауна практическое применение нашли единомышленники. Профессор Джагдиш Чандра Бос сообщил 27 апреля 1899 года о создании первого детектора-приёмника для работы в паре с радиопередатчиком. Он использовал галенит (оксид свинца) в паре с простым проводом и поймал волны миллиметрового диапазона. В 1901 году запатентовал своё детище. Не исключено, что под влиянием слухов о Попове. Детектор Боса использован в первой трансатлантической радиопередаче Маркони. Аналогичного рода устройства на кристалле кремния запатентовал в 1906 году Гринлиф Уиттер Пиккард.

В своей речи на вручении Нобелевской премии в 1909 году Браун отметил, что не понимает принципов открытого им явления, зато обнаружил целый ряд материалов, проявляющих новые свойства. Это уже упомянутый выше галенит, пирит, пиролюзит, тетраэдрит и ряд прочих. Перечисленные материалы привлекли внимание по простой причине: проводили электрический ток, хотя считались соединениями элементов таблицы Менделеева. Прежде подобные свойства считались прерогативой простых металлов.

Наконец, в 1926 году уже появились первые транзисторы с барьером Шоттки, а теорию под явление подвёл Уильям Брэдфорд Шокли в 1939 году. Тогда же Невилл Франсис Мот объяснил явления, происходящие в на стыке двух материалов, вычислив ток диффузии и дрейфа основных носителей заряда. Вальтер Шоттки дополнил теорию, заменив линейное электрическое поле затухающим и добавив представление о донорах ионов, расположенных в приповерхностном слое полупроводника. Объёмный заряд на границе раздела под слоем металла назвали именем учёного.

Схожие попытки подведения теории под имеющийся факт предпринимал Давыдов в 1939 году, но неправильно дал лимитирующие факторы для тока и допустил прочие ошибки. Самые правильные выводы сделал Ханс Альбрехт Бете в 1942 году, увязавший ток с термоэлектронной эмиссией носителей сквозь потенциальный барьер на границе двух материалов. Таким образом, современное название явления и диодов должно бы носить имя последнего учёного, теория Шоттки обнаруживала изъяны.

Теоретические исследования упираются в сложность измерения работы выхода электронов из материала в вакуум. Даже для химически инертного и стабильного металла золота определённые показания разнятся от 4 до 4,92 эВ. При высокой степени вакуума, в отсутствие ртути от насоса или масляной плёнки, получаются значения в 5,2 эВ. С развитием технологии в будущем предвидятся значения точнее. Иным вариантом решения станет использование сведений об электроотрицательности материалов для правильного предсказания событий на границе перехода. Эти величины (по шкале Поллинга) известны с точностью до 0,1 эВ. Из сказанного понятно: сегодня правильно предсказать высоту барьера по указанным методикам и, следовательно, выпрямительные свойства диодов Шоттки не представляется возможным.

Лучшие способы определения высоты барьера Шоттки

Высоту допустимо определить по известной формуле (см. рис). Где С – коэффициент, слабо зависящий от температуры. Зависимость от приложенного напряжения Va, несмотря на сложную форму считается почти линейной. Угол наклона графика составляет q/ kT. Высоту барьера определяют по графику зависимости lnJ от 1/Т при фиксированном напряжении. Расчёт ведётся по углу наклона.

Альтернативный метод состоит в облучении перехода металл-полупроводник светом. Используются способы:

  1. Свет проходит через толщу полупроводника.
  2. Свет падает прямо на чувствительную площадку фотоэлемента.

Если энергия фотона укладывается в промежуток энергий между запрещённой зоной полупроводника и высотой барьера, наблюдается эмиссия электронов из металла. Когда параметр выше обоих указанных величин, выходной ток резко возрастает, что легко заметно на установке для эксперимента. Указанный метод позволяет установить, что работы выхода для одинакового полупроводника, с разными типами типами проводимости (n и p), в сумме дают ширину запрещённой зоны материала.

Новым методом для определения высоты барьера Шоттки служит измерение ёмкости перехода в зависимости от приложенного обратного напряжения. График показывает вид прямой, пересекающей ось абсцисс в точке, характеризующей искомую величину. Результат экспериментов сильно зависит от качества подготовки поверхности. Изучение технологических методов обработки показывает, что травление в плавиковой кислоте оставляет на образце из кремния слой оксидной плёнки толщиной 10 — 20 ангстрем.

Неизменно отмечается эффект старения. Меньше характерен для диодов Шоттки, образованных путём скола кристалла. Высоты барьеров отличаются для конкретного материала, в отдельных случаях сильно зависят от электроотрицательности металлов. Для арсенида галлия фактор почти не проявляется, в случае с сульфидом цинка играет решающую роль. Зато в последнем случае слабое действие оказывает качество подготовки поверхности, для GaAs это крайне важно. Сульфид кадмия находится в промежуточном положении относительно указанных материалов.

При исследовании оказалось, что большинство полупроводников ведёт себя подобно GaAs, включая кремний. Мид объяснил это тем, что на поверхности материала образуется ряд формаций, где энергия электронов лежит в области трети запрещённой зоны от зоны валентности. В результате при контакте с металлом уровень Ферми в последнем стремится занять схожее положение. История повторяется с любым проводником. Одновременно высота барьера становится разницей между уровнем Ферми и краем зоны проводимости в полупроводнике.

Сильное влияние электроотрицательности металла наблюдается в материалах с ярко выраженными ионными связями. Это прежде всего четырёхвалентный оксид кремния и сульфид цинка. Объясняется указанный факт отсутствием формаций, влияющих на уровень Ферми в металле. В заключение добавим, что исчерпывающей теории по поводу рассматриваемого вопроса сегодня не создано.

Преимущества диодов Шоттки

Не секрет, что диоды Шоттки служат выпрямителями на выходе импульсных блоков питания. Производители упирают на то, что потери мощности и нагрев в этом случае намного ниже. Установлено, что падение напряжения при прямом включении на диоде Шоттки меньше в 1,5 – 2 раза, нежели в любом типе выпрямителей. Попробуем объяснить причину.

Рассмотрим работу обычного p-n-перехода. При контакте материалов с двумя разными типами проводимости начинается диффузия основных носителей за границу контакта, где они уже не основные. В физике это называется запирающим слоем. Если на n-область подать положительный потенциал, основные носители электроны моментально притянутся в выводу. Тогда запирающий слой расширится, ток не течёт. При прямом включении основные носители, напротив, наступают на запирающий слой, где активно с ним рекомбинируют. Переход открывается, течёт ток.

Выходит, ни открыть, ни закрыть простой диод мгновенно не получится. Идут процессы образования и ликвидация запирающего слоя, требующие времени. Диод Шоттки ведёт себя чуть по-иному. Приложенное прямое напряжение открывает переход, но инжекции дырок в n-полупроводник практически не происходит, барьер для них велик, в металле таких носителей мало. При обратном включении в сильно легированных полупроводниках способен течь туннельный ток.

Читатели, ознакомленные с темой Светодиодное освещение, уже в курсе, что первоначально в 1907 году Генри Джозеф Раунд сделал открытие на кристаллическом детекторе. Это диод Шоттки в первом приближении: граница металла и карбида кремния. Разница в том, что сегодня используют полупроводник n-типа и алюминий.

Свойства перехода зависят от применяемых материалов и от геометрических размеров. Объёмный заряд в рассматриваемом случае меньше, нежели при контакте двух полупроводников разного типа, значит, время переключения значительно снижается. В типичном случае укладывается в диапазон от сотен пс до десятков нс. Для обычных диодов минимум на порядок выше. В теории это выглядит как отсутствие повышения уровня барьера при приложенном обратном напряжении. Легко объяснить и малое падение напряжения тем, что часть перехода составлена чистым проводником. Актуально для приборов, рассчитанных на сравнительно низкие напряжения в десятки вольт.

Сообразно свойствам диодов Шоттки они находят широкое применение в импульсных блоках питания для бытовой техники. Это позволяет снизить потери, улучшить тепловой режим работы выпрямителей. Малая площадь перехода обусловливает низкие напряжения пробоя, что слегка компенсируется увеличением площади металлизации на кристалле, охватывающей часть изолированной оксидом кремния области. Эта площадь, напоминающая конденсатор, при обратном включении диода обедняет прилегающие слои основными носителями заряда, значительно улучшая показатели.

Благодаря быстродействию диоды Шоттки активно применяются в интегральных схемах, нацеленных на использование высоких частот — рабочих и частот синхронизации.

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является , который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от постоянного тока, значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки - именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает - в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004) - Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А - пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.


STPS3045CW - Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.

Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Шоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
Ультрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
Ультрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
Ультрафаст SR504 5A 40V Vf=0.57
Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Шоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
Ультрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Шоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Шоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Шоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Шоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Шоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Шоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Шоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
Ультрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:


Также выпускаются , которые можно использовать например в БП ламповых усилителей и другой аппаратуры с повышенным питанием. Список приведён ниже:


Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Диод Шоттки, принцип работы которого мы опишем сегодня, является очень удачным изобретением немецкого ученого Вальтера Шоттки. В его честь устройство и было названо, а встретить его можно при изучении самых разных электрических схем. Для тех, кто еще только начинает знакомиться с электроникой, будет полезным узнать о том, зачем его используют и где он чаще всего применяется.

Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл.
Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В. Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.

Структура самого устройства несложна и выглядит следующим образом:

  • полупроводник;
  • стеклянная пассивация;
  • металл;
  • защитное кольцо.

При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.

Отличие от других полупроводников

Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.

Такие элементы изготавливают из целого ряда ценных металлов:

  • арсенида галлия;
  • кремния;
  • золота;
  • вольфрама;
  • карбида кремния;
  • палладия;
  • платины.

От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний - по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.

Плюсы и минусы

При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.

К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро - стоит только провести подключение.

Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное - понимать специфику его работы и использовать его корректно.