Принцип работы отстойников воды. Разновидности отстойников для сточных вод

К атегория: Очистка сточных вод

Отстойники для отчистки сточных вод

Отстойники применяют для предварительной очистки сточных вод, если по местным условиям требуется их биологическая очистка, или как самостоятельные сооружения, если по санитарным условиям вполне достаточно выделить из сточных вод только механические примеси.

В зависимости от назначения отстойники подразделяются на первичные, которые устанавливают до сооружений биологической обработки сточных вод, и вторичные, которые устанавливают после этих сооружений.

По конструктивным признакам отстойники подразделяются на горизонтальные, вертикальные и радиальные. К отстойникам условно могут быть отнесены и осветлители, в которых одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных веществ.

Тип отстойника (вертикальный, радиальный, с вращающимся сборно-распределительным устройством, горизонтальный, двухъярусный и др.) необходимо выбирать с учетом принятой технологической схемы очистки сточных вод и обработки их осадка, пропускной способности сооружений, очередности строительства, количества эксплуатируемых единиц, конфигурации и рельефа площадки, геологических условий, уровня грунтовых вод и т. п.

Рис. 1. Горизонтальный отстойник из сборного железобетона 1 - трубопровод для отвода сырого осадка; 2 и 4- лотки площадью сечения соответственно 800X 900 и 600X900 мм; 3 и 14 - дюкеры для подачи исходной сточной воды; 5 -впускные отверстия; 6 - скребковая тележка; 7 - жиросбор-ный лоток; 8 - ребро водослива; 9 - фронтальная тележка; 10, 11 - жиропро-зоды; 12 - аварийный дюкер; 13 - трубопровод опорожнения; 15 - шиберы 400X600 мм; 16 - дюкер для отвода осветленной воды

Рис. 2. Схема осаждения частиц в горизонтальном отстойнике

Иногда отстойники рассчитывают по нагрузке, т.е. по количеству сточной жидкости, м3, приходящейся на 1 м2 поверхности водного зеркала отстойника в 1 ч. Эту величину назначают по данным эксплуатации аналогичных отстойников, обеспечивающих более или менее удовлетворительный эффект осветления. Обычно нагрузку принимают 1-3 м3/ч на 1 м2 поверхности отстойника.

Кроме размеров проточной части отстойников (И, L, В), в пределах которой осаждаются взвешенные вещества, необходимо также определить объем осадочной части отстойника. Количество выпавшего осадка в первичных отстойниках для бытовых сточных вод составляет 0,8 л/сут на одного человека. Влажность выгружаемого осадка зависит от способов его удаления: при самотечном удалении осадка она принимается равной 95%, а при механизированном - 93%.

Для накапливания выпавшего осадка и периодической его выгрузки в начале отстойника устраивают приямки, объем которых зависит от конструкций отстойников и способов удаления ила. Наиболее распространенный способ - выдавливание осадка под гидростатическим напором воды, равным 1,5 м. В некоторых случаях выпавший осадок удаляют, откачивая его плунжерными насосами. Объем осадочной части отстойников принимается равным двухсуточному объему выпадающего осадка (при механизированном удалении осадка объем осадочной части можно принимать равным 8-часовому объему выпадающего осадка). Чтобы осадок самотеком сползал к приямкам, днищу отстойника придают уклон не менее 0,01. Горизонтальные отстойники проектируют со скребковыми механизмами для сгребания осадка к приямкам.

Вертикальные отстойники представляют собой круглые или квадратные в плане резервуары с конусным или пирамидальным днищем. Вертикальные отстойники обычно предусматривают на станциях пропускной способностью до 50 000 м3/сут, а чаще -до 20 000 м3/сут и при низком уровне грунтовых вод.

Сточная жидкость подводится к низу рабочей части отстойника по центральной трубе (рис. 3). После выхода из трубы сточная жидкость движется снизу вверх к сливным желобам, по которым поступает в отводной лоток. Во время движения сточной жидкости по отстойнику из нее выпадают взвешенные вещества, удельный вес которых больше удельного веса воды.

Проф. С. М. Шифрин на основе результатов многочисленных опытов и теоретических исследований предложил новый метод расчета вертикальных отстойников. Наблюдения за распределением сточной жидкости по отстойнику показали, что жидкость, выйдя из щели между раструбом центральной трубы и отражательным щитом, движется радиально к стенкам отстойника, а затем поднимается вверх вдоль стенок с относительно большими скоростями. Взвешенные вещества выпадают на горизонтальном пути движения жидкости от центра отстойника к периферии за счет растекания струи и уменьшения скорости движения. Чем мельче те частицы, которые должны быть выделены из сточной жидкости, тем больше должен быть радиус отстойника, представляющий собой основную расчетную величину.

Рис. 3. Вертикальный отстойник диаметром 9 м из сборного железобетона 1 - выпуск осадка; 2 - выпуск плавающих веществ; 3 - центральная труба с отражательным щитом; 4 - водосборный желоб; 5 и 6 - отводящий и подводящий лотки

Рис. 4. Зависимость эффекта осветления Э в вертикальных отстойниках от минимальной гидравлической крупности осаждаемых частиц «о и начальной концентрации взвешенных веществ в сточной жидкости С (а) и график для расчета вертикальных отстойников

При расчете отстойников по методу проф. С. М. Шифрина вначале по необходимому эффекту осветления при заданной концентрации взвесей в сточной воде находят по графику (рис. 4, а) гидравлическую крупность и частиц, которые должны быть задержаны в отстойнике. Затем по найденной гидравлической крупности по графику (рис. 4,6) определяют радиус отстойника г в зависимости от средней скорости входа сточной жидкости в отстойник, принимаемой равной 1,2 м/с. Диаметр центральной трубы d рассчитывают по скорости 30 мм/с. Длину трубы и равную ей высоту цилиндрической части отстойника принимают не менее 2,75 м.

Рис. 5. Вертикальный отстойник с нисходяще-восходящим потоком 1 - приемная камера; 2 - подающий лоток; 3 и 4 - трубопровод и приемная воронка для удаления плавающих веществ; 5 - зубчатый водослив; 6-отражательный козырек; 7 - распределительный лоток; 8 - лоток для сбора осветленной воды; 9 - отводящий трубопровод; 10 - отстойник; 11 - кольцевая полупогружная перегородка; 12 - иловая труба

Рис. 6. Вертикальный отстойник с периферическим впускным устройством 1 - ведоподающая труба (или лоток); 2 - водораспределительный лоток переменного сечения; 3 - етруенаправляющая стенка; 4 - кольцевой водосборный лоток; 5 - трубопровод для отвода осветленной воды; 6 - отражательное кольцо; 7 - труба для выпуска осадка; 8- сборник всплывающих веществ

Рис. 7. Первичные радиальные отстойники 1 - илоскреб; 2 - распределительная чаша; 3 и 7 - подводящий и отводящий трубопроводы; 4 - трубопровод сырого осадка; 5 - жиросборник; 6 - насосная станция

Объем осадочной камеры вертикальных отстойников определяют так же, как и для горизонтальных отстойников. Осадок удаляется самотеком (под гидростатическим напором столба воды) через иловую трубу, опущенную до основания отстойника. Нижнюю часть осадочной камеры делают конической или пирамидальной с углом наклона стенок к горизонту 50° для создания благоприятных условий сползания выпавшего осадка.

Осветленная вода отводится по сливному лотку (желобу), расположенному по периметру отстойника. На расстоянии 0,3-0,5 м от желоба устанавливают обычно полупогружную доску, которая задерживает всплывающие вещества. Для отстойников диаметром 6 м и более сборные желоба устраивают не только по периферии, но и радиально, что улучшает условия распределения воды в отстойнике и повышает эффект его работы.

Вертикальные отстойники делают из железобетона. Эффект осветления жидкости в таких отстойниках практически не превышает 40%.

Представляет интерес конструкция вертикального отстойника с нисходяще-восходящим потоком сточной воды (рис. 5). Вместо центральной трубы в этом отстойнике имеется полупогружная перегородка большого диаметра. Впуск воды производится через зубчатый водослив. Отражательный козырек изменяет направление движения воды с вертикального на горизонтальное. Затем поток поднимается вверх, вода переливается в сборный лоток и отводится трубой. Такая конструкция отстойника обеспечивает эффективность задержания взвешенных веществ 60-70%. Отношение нисходящей и восходящей площадей потока принимается равным 1:1. Высота полупогружной перегородки составляет 2/3 высоты проточной части отстойника.

В вертикальном отстойнике с периферическим впускным устройством конструкции ВНИИ ВОДГЕО (рис. 6) сточная вода подается в распределительный периферийный лоток, а из него в кольцевую зону между стенкой отстойника и струенаправляющей стенкой. Внизу кольцевой зоны располагается отражательное кольцо. Осветленная вода собирается кольцевым водосборным лотком с зубчатыми водосливами. Скорость движения воды в водораспределительном лотке 0,4-0,5 мм/с. Удельная нагрузка на зубчатый водослив 6 л/(с-м).

Радиальные отстойники. Разновидностью горизонтального отстойника является радиальный отстойник (рис. 7), представляющий собой круглый неглубокий резервуар, вода в котором движется от центра к периферии. Радиальные отстойники устраивают с выпуском воды снизу или сверху; и в том, и в другом случае вода поступает в отстойник по центральной трубе, а осветленная вода сливается в круговой желоб, откуда она отводится по трубам или лоткам. Выпавший на дно осадок сгребается к центру скребками, укрепленными на подвижной ферме, и поступает в приямок, из которого под давлением столба воды высотой 1,5 м удаляется по трубам или отсасывается плунжерными насосами.

Радиальные отстойники применяют главным образом на крупных станциях очистки сточных вод. В частности, такие отстойники сооружены на Люберецкой и Курьяновской очистных станциях в Москве. Диаметр отстойников может быть различным (от 18 до 54 м). Эти отстойники можно рассчитывать по нагрузке, принимая равной 1,5-3,5 м3 на 1 м2 поверхности в 1 ч. Продолжительность отстаивания в зависимости от способа последующей биологической очистки колеблется от 0,5 до 1,5 ч. Влажность выгружаемого осадка равна 95% при самотечном удалении и 93 % при удалении насосами. Обычно радиальные отстойники компонуются в блоки из четырех отстойников.

Проектируют и строят также радиальные отстойники с периферийной подачей сточных вод (рис. 8). Водораспределительный желоб, расположенный на периферии отстойника, имеет постоянную ширину и переменную глубину, так как в дне желоба впускные отверстия разного диаметра размещены на разном расстоянии друг от друга и тем самым обеспечивают постоянную поступательную скорость движения воды в желобе, поэтому осадок в желобе не выпадает. Поток жидкости направляется в нижнюю зону отстойника, а затем в центральную зону и вверх к водоотводящему кольцевому желобу. Такое движение потока создает благоприятные условия для выпадения взвешенных веществ. Осадок собирается коллектором и отводится за пределы отстойника по трубе.

Для сбора и удаления всплывших грубодисперсных примесей предусматривают два бункера, один из которых устанавливают в центральной части отстойника, а второй - в кольцевой зоне. Осветленная вода отводится из центрального кольцевого лотка с двусторонним из-ливом или через щелевые отверстия в центробежной трубе.

Отстойники с периферийным впуском воды и при одинаковой продолжительности отстаивания обеспечивают в 1,2-1,3 раза больший эффект очистки, чем обычные радиальные отстойники; при одинаковом эффекте очистки их пропускная способность увеличивается в 1,3- 1,6 раза в зависимости от концентрации исходной воды. МосводоканалНИИпроектом разработаны проекты первичных отстойников с периферийным впуском воды диаметром 24 и 30 м.

Рис. 8. Радиальный отстойник с периферийным выпуском диаметром 18 м 1 - подводящий канал; 2 - трубопровод для отвода плавающих веществ; 3 - отводящий трубопровод; 4- затвор с подвижным водосливом для выпуска плавающих веществ; 5 - струенаправляющие трубки; 6 - распределительный лоток; 7- полупогружная доска для задержания плавающих веществ; 8 - иловая труба

Рис. 9. Отстойник с вращающимся сборно-распределительным устройством 1 - подводящий трубопровод; 2 - воздушные затворы; 3 - центральная чаша; 4 - сборно-распределительное устройство; 5 - периферийный привод; 6 - скребки; 7 - отводящий трубопровод осветленной воды; 8 - илопровод; 9 - затопленный лоток; 10 - вертикально подвешенные лопатки; -водослив; 12 - полупогружная доска; 13 - щелевое днище; 14 - криволинейная перегородка; 15 - камера жиросборника; 16 - направление впуска сточной воды; 17 - направление движения сборно-распределительного устройства

Оригинальна конструкция радиального отстойника с вращающимися водораспределительным и водосборным устройствами, предложенная проф. И. В. Скирдовым (рис. 9). Конструкция отстойника такова, что основная масса воды в нем находится в потоке и поэтому обеспечивается быстрое осаждение взвешенных веществ. Распределение и сбор осветленной воды производится с помощью вращающегося желоба, разделенного продольной перегородкой. Распределительный лоток имеет струенаправляющие лопатки и щелевое днище, через щели которого падают тяжелые частицы.

Стенки и днище водосборного лотка с затопленным водосливом водонепроницаемые. Вода из лотка отводится с помощью сифона в отводной желоб. В водосборном лотке у днища находится направляющий козырек. Пропускная способность отстойника такой конструкции в 1,5 раза больше, чем типового радиального отстойника при одинаковом эффекте осветления. Глубина зоны отстаивания 0,8-1,2 м, высота нейтрального слоя 0,7 м.

Союзводоканалпроектом разработаны проекты отстойников с вращающимся сборно-распределительным устройством диаметром 18 и 24 м.

Тонкослойные отстойники имеют водораспределительную, отстойную и водосборную зоны, а также осадочную зону. Отстойная зона разделена полками (или трубами) и отстаивание происходит в пространстве между полками высотой до 15 см. Известен ряд конструкций тонкослойных отстойников.

В тонкослойном отстойнике возможны следующие схемы движения воды и выпавшего осадка:
1) перекрестная - когда осадок движется перпендикулярно направлению движения потока;
2) противоточная - когда осадок удаляется в направлении, противоположном движению потока;
3) прямоточная - когда направления движения потока и осадка совпадают.

Наиболее эффективны тонкослойные отстойники с противоточной схемой движения фаз - воды и осадка. Осадок сползает в иловый приямок, из которого периодически удаляется. Всплывшие вещества собираются в пазухе между секциями и удаляются лотком. Тонкослойные отстойники обычно применяют для осветления сточных вод, содержащих взвешенные вещества однородного состава в относительно небольших концентрациях. Иногда их используют в качестве второй ступени механической очистки.

Рис. 10. Тонкослойный трубчатый отстойник 1 - подающие распределительные трубопроводы; 2- распределительная щель; 3 - пластмассовые трубчатые блоки; 4 - водосборная щель; 5 - лотки для сбора осветленной воды; 6 - пазухи для сбора всплывающих веществ; 7-поворотные трубы для отвода плавающих веществ; 8 - емкость; 9 - приямки для сбора и уплотнения осадков; 10 - трубопроводы для выпуска осадка

Рис. 11. Зависимость показателя степени пi от исходной концентрации механических загрязнений в городских сточных водах при различном эффекте отстаивания

По конструкции тонкослойные отстойники бывают вертикальные, горизонтальные и радиальные. Они имеют водораспределительную и водосборную зоны и зону полочных или трубчатых элементов. Скорость движения потока в полочных элементах 5-10 мм/с, а в трубчатых- до 20 мм/с. Высота тонкослойного пространства 1-2 м. Тонкослойные блоки, выполненные из пластмассы, стали или алюминия, имеют наклон 45-60°.

В тонкослойном трубчатом отстойнике противоточно-го типа (рис. 10) сточная вода по распределительным трубопроводам подается в клинообразные щели. Затем вода осветляется в трубчатых блоках и собирается водосборными щелями. Выпавший осадок сползает в иловые приямки, откуда удаляется под действием гидростатического напора. Плавающие вещества удаляются с помощью поворотных труб.



- Отстойники для отчистки сточных вод

В практике водоподготовки для предварительного осветления воды перед поступлением ее на скорые фильтры применяют горизонтальные (рис. 6.1), вертикальные (рис. 6.2), радиальные (рис. 8.5) и тонкослойные (рис. 8.6) отстойники. Название отстойников дано в соответствии с направлением и характером движения воды в них. По высоте в отстойниках различают зоны: осаждения, накопления и уплотнения осадка. Содержание взвешенных веществ в осветленной воде после отстойников не должно превышать 8-15 мг/л. Горизонтальный отстойник - прямоугольный, вытянутый в направлении движения воды железобетонный резервуар, в котором осветляемая вода движется в направлении, близком к горизонтальному вдоль отстойника.. Различают одно-, двух- и трехэтажные горизонтальные отстойники. Отстойники, используемые для предварительного осветления воды, могут быть устроены в земле креплением или без крепления откосов. Горизонтальные отстойники в отечественной практике рекомендуется применять при мутности до 1500 мг и цветности 120 град обрабатываемой воды и при производительности водоочистного комплекса не менее 30 тыс. м3/сут. Вертикальный отстойник - круглый в плане и в очень редких случаях квадратный железобетонный (реже стальной) резервуар значительной глубины, в котором обрабатываемая вода движется вертикально - снизу вверх. В отечественной практике вертикальные отстойники рекомендуется использовать при мутности и цветности обрабатываемой воды до 1500 мг/л и до 120 град и при производительности водоочистного комплекса до 5000 м3/сут. Радиальный отстойник (рис. 8.5) - круглый в плане железобетонный резервуар, высота которого невелика по сравнению с его диаметром. Вода в отстойнике движется от центра к периферии в радиальном направлении, близком к горизонтальному. СНиП рекомендует использовать радиальные отстойники при обработке высокомутных вод и в системах оборотного водоснабжения.

Рис. 8,5. Схема радиального отстойника с рециркуляцией осадка (а) тонкослойными модулями (б)

1, 11 - подача и отвод воды; 2 - сопло; 3 - грязевой приямок; 4 - рециркулятор; 5 - скребки; 6 - вращающаяся ферма; 7 - служебный мостик; о - водосливные окна; 9 - зона осветления воды; 10 - кольцевой водосборный лоток; 12 - тонкослойные блоки; 13 - отвод осадка; 14 - крепления блоков

Отстойники с малой глубиной осаждения (рис. 8.6). Среди методов интенсификации процесса осаждения примесей воды одним из наиболее перспективных является отстаивание в тонком слое. Сущность его заключается в ламинаризации потока воды (Re = 60 ... 80), при которой исключается влияние взвешивающей составляющей. В России и за рубежом разработаны различные конструкции тонкослойных отстойников с использованием пластмасс, стеклопластиков и других материалов, обеспечивающих легкое сползание и удаление осадка с поверхности.


Горизонтальные отстойники

Горизонтальные отстойники с рассредоточенным по площади сбором осветленной воды (см. рис. 6.1, 6.4, 6.5) в условиях нашей страны с продолжительными периодами устойчивых минусовых температур устраивают в здании или с покрытиями и обсыпают землей с боков и сверху. В перекрытии отстойников предусматривают люки для спуска в сооружение, отверстия для отбора проб, располагаемые на расстоянии до 10 м друг от друга и вентиляционные трубы. Обычно со стороны входа воды отстойники совмещают с камерами хлопьеобразования зашламленного или вихревого типа (см. рис. 6.1). В южных районах с теплым климатом отстойники устраивают открытыми.

Для равномерности распределения воды в поперечном сечении отстойника его объем делят в продольном направлении перегородками на самостоятельно действующие секции шириной 3 ... 6 м (в зависимости от шага колонн, поддерживающих перекрытие). При количестве секций менее шести необходимо предусматривать одну резервную. Дно отстойника должно иметь продольный уклон не менее 0,005 в направлении, обратном движению воды, а в поперечном направлении оно может быть плоским или призматическим с углом наклона граней 45°. Для удаления осадка без отключения отстойника из работы по предложению И. М. Миркиса предусматривают гидравлические системы в виде перфорированных труб, которые обеспечивают его удаление в течение 20 ... 30 мин. При открытой задвижке на сбросе осадок под действием гидростатического давления поступает в систему и в виде пульпы удаляется из отстойника.

Другим способом удаления осадка является выпуск его через специальную дренажную систему, укладываемую по дну отстойника (см. рис. 6.1). Опыт эксплуатации показал, что при ширине секции отстойника не более 3 м осадок из нее может удаляться одной дырчатой трубой, прокладываемой по ее продольной оси (при большей ширине секции нужны две параллельные дырчатые трубы). Поэтому расстояние между осями труб назначают не более 3 м - при призматическом днище, и 2 м - при плоском. В трубах для удаления осадка принимают отверстия диаметром не менее 25 мм, располагаемые с шагом 0,3 ... 0,5 м в шахматном порядке вниз под углом 45° к оси трубы. Отношение суммарной площади отверстий к площади сечения трубы должно быть равным 0,5 ... 0,7. В верхней части начала сбросной трубы предусматривают отверстие диаметром не менее 15 мм для удаления воздуха. Скорость движения пульпы в конце трубы принимают не менее 1 м/с, а в ее отверстиях - 1,5 ... 2 м/с. Потеря воды с осадком в среднем не превышает 0,8% от производительности отстойника, в то время как при выключениях отстойника из работы на очистку от осадка средняя потеря воды превышает 4%.

Из открытых горизонтальных отстойников осадок можно- удалять специальными плавучими землесосными снарядами, серийно выпускаемыми нашей промышленностью. При движении такого снаряда по коридору отстойника напорный шланг снаряда попеременно присоединяется к патрубкам трубчатой системы, по которой осадок под напором, развиваемым насосом землесосного снаряда, перекачивается за пределы очистной станции.

В.А. Михайловым и В.А. Лысовым при осветлении мутных и высокомутных вод была предложена и внедрена напорная гидравлическая система смыва осадка с периодическим отключением подачи воды в отстойник (рис. 8.7). Она состоит из телескопических дырчатых труб с насадками, насосной установки, резервуара промывной воды и емкости для сбораи предварительного уплотнения осадка перед передачей его на сооружения обезвоживания.

В качестве механизированных средств удаления осадка без отключения отстойника можно применять скребковые транспортеры, которые сгребают осадок в приямок, откуда этот осадок откачивается эжектором или насосом.

Децентрализованный сбор осветленной воды, способствующий увеличению коэффициента объемного использования сооружения, осуществляют системой горизонтально расположенных желобов с затопленными отверстиями или треугольными водосливами, либо перфорированных труб, расположенными на участке 2/3 длины отстойника, считая от задней торцовой стенки.


Расстояние в осях между водосборными трубами или желобами назначают до 3 м. При оборудовании отстойника тонкослойными модулями подобную систему сбора воды устраивают на всю его длину. Кромку водосборного желоба с затопленными отверстиями располагают на 0,1 м выше максимального уровня воды в отстойнике, а заглубление водосборных труб определяют расчетом по методике А. И. Егорова. Отверстия водосборных устройств диаметром не менее 25 мм размещают на 5 ... 8 см выше дна желоба, а в трубах - горизонтально по оси с двух сторон. Скорость входа воды в отверстия принимают 1 м/с, а скорость движения воды в конце водосборных труб и желобов 0,6 ... 0,8 м/с. Излив воды из водосборных устройств отстойника в торцовый карман (канал) должен происходить без его подтопления.

Высоту отстойников следует определять как сумму высот зоны осаждения и зоны накопления осадка с учетом превышения строительной высоты над расчетным уровнем воды не менее 0,3 м.

Основой расчета горизонтальных отстойников является определение такой длины зоны осаждения отстойника, которая при принятой средней скорости движения воды в отстойнике обеспечит требуемый эффект ее осветления, т. е. задержание заданного процента взвеси. При этом, по В. Т. Турчиновичу, исходят из упрощенного представления, согласно которому частицы взвеси в отстойнике осаждаются также, как в неподвижном объеме воды, с той лишь разницей, что этот объем перемещается в горизонтальном направлении со скоростью движения воды в отстойнике.

Расчет отстойников следует производить на два случая: при минимальной мутности и при минимальном зимнем расходе обрабатываемой воды, а также при наибольшей мутности при наибольшем расходе воды, соответствующем этому периоду.

6При длине отстойника Lи скорости горизонтального движения потока в нем vтеоретическая продолжительность пребывания воды в отстойнике будет

Это время, определяемое из соотношения, должно быть равно продолжительности осаждения, необходимой для получения заданного эффекта осветления воды. Как уже отмечалось выше, при расчете отстойников пользуются обычно фиктивной скоростью осаждения (или так называемой «процентной скоростью осаждения»), которая определяется по формуле

.Подставляя в эту формулу значения Тр, получим

Уровень загрязнения сточных вод оказывает значительное влияние на состояние экологии, а значит и здоровье человека. Именно поэтому необходимость в очистных сооружениях для воды существует не только на предприятиях, но и в индивидуальном строительстве, особенно в частных домах, не подключенных к централизованной канализации. Самым простым и наименее энергоемким способом удаления взвешенных частиц и прочих примесей из сточных вод считается отстаивание. В данной статье мы рассмотрим, какие отстойники для сточных вод существуют, принципы их работы и некоторые нюансы устройства очистных сооружений своими руками.

Внедрение полноценной очистки сточных вод на отдельно взятом участке – мероприятие довольно затратное и хлопотное, требующее помощи специалистов. Сам процесс включает в себя четыре основных этапа:

  • механическая очистка;
  • биологическая;
  • физико-химическая очистка сточных вод;
  • дезинфекция.

Отстойники или, как их еще называют, септики, используются на первом этапе. Они экономичны и эффективны, поэтому широко применяются не только в индивидуальном строительстве, но и на различных предприятиях. Понятно, что объем и размер септика для дома будет гораздо скромнее, чем для промышленных целей.

Промышленные отстойники для сточных вод отличаются большими размерами

В зависимости от того, какая степень очистки требуется, отстойники для сточных вод используются с целью предварительной обработки перед подачей в более мощные очистные сооружения или как окончательный вариант, если необходимо выделить только нерастворимые примеси.

Количество нерастворимых примесей, которые оседают в первичных отстойниках, зависит от уровня первоначального содержания их в жидкости и от характеристик частиц: размера, формы, плотности, скорости оседания. В воде, которая затем направляется на очистку с помощью фильтров, содержание взвешенных частиц не должно превышать 150 мг/л. Большое значение имеет продолжительность отстаивания. В основном грубодисперсные вещества выпадают в осадок в течении 1,2-2 часов.

Классификация отстойников

В зависимости от того, какое место занимают отстойники в технологической схеме очистной системы их подразделяют на первичные и вторичные. Первичные располагаются до сооружений для биоочистки сточных вод, а вторичные – после.

Различают их и по режиму работы. Выделяют отстойники непрерывного действия (проточные), в которых оседание примесей происходит при медленном течении жидкости, а также контактные или периодического действия, жидкость находится в них в спокойном состоянии. Контактные отстойники чаще всего небольшого объема.

Горизонтальный отстойник из пластика, состоящий из трех отделений

Существует классификация по направлению движения потока воды. В горизонтальных отстойниках сточные воды движутся горизонтально, в вертикальных – направление движения снизу вверх, в радиальных – от центра к периферии.

  • Горизонтальный отстойник – это прямоугольная емкость, разделенная на несколько отделений и оборудованная водосборным и водораспределительным устройствами, трубопроводом для подведения к емкости сточных вод и специальным приспособлением для устранения осадка, который образовывается при эксплуатации. Применяют отстойники данного типа для очистки воды в водопроводах с высокой производительностью.
  • Вертикальный отстойник – резервуар, имеющий в сечении круглую или квадратную форму, оснащенный камерой хлопьеобразования и желобами для отвода осветленной воды. К нему подводят трубопровод подачи сточных вод, а также специальную трубу для опорожнения отстойника и удаления осадка. Применяют отстойники этого типа для очистки хозяйственно-бытовых стоков, пропускная способность их относительно невысока.
  • Радиальный отстойник – круглый в плане резервуар, в который загрязненная жидкость подается снизу и движется от центра к периферии. Взвешенные частицы удаляются с поверхности специальным подвесным устройством, размещенном на вращающейся ферме. Осадок с помощью скребков перемещается в приямок отстойника.

Система очистки сточных вод для частного дома

Простейшая система очистки сточных вод для загородного частного дома состоит из отстойника, соединенного с канализацией, и горизонтальных труб с отверстиями, находящихся под землей.

Отстойник из бетонных колец, соединенных между собой

Обязательное условие – герметичность емкости. Легче всего его соблюсти, если купить готовые септики из пропилена или пластмассы. С их помощью систему очистки стоков можно смонтировать быстрее, чем при самостоятельном изготовлении отстойника, хотя трудоемких земельных работ не избежать в любом случае.

Если принято решение соорудить септик самостоятельно, то предпочтение лучше отдать конструкции из бетонных колец. Особое внимание нужно уделить герметичности стыков и швов, а также учесть, что расстояние от конструкции до колодца или водопровода не должно быть менее 30 м. Существуют и другие требования по расположению септика на участке. Так расстояние до дома и прочих построек должно составлять не менее 3 м, на таком же удалении должны располагаться деревья и кустарники, а до границы садового участка должно быть не менее 2м.

Вторая часть системы располагается в земле, это горизонтальные трубы с отверстиями. В них небольшими порциями поступают сточные воды из предварительного отстойника и затем просачиваются в грунт.

Все про септические процессы — ВИДЕО

В данной статье мы познакомились с различными классификациями отстойников для сточных вод, выяснили принцип их работы. Выбор отстойника определенной конструкции и типа осуществляется в зависимости от технических характеристик, с учетом местных условий. Очень полезен будет в этом деле совет специалиста, так как очистные системы – непростое инженерное сооружение, а их монтаж – дело ответственное.

Отстойники

Устройство. Отстаивание является более дешевым процессом, чем другие процессы разделения неоднородных систем, например фильтрование. Кроме того, разделение фильтрованием ускоряется при прочих равных условиях в случае предварительного сгущения фильтруемого материала. Поэтому отстаивание часто используют в качестве первичного процесса разделения, стремясь удалить возможно большие количества твердого вещества из сплошной фазы.

Отстаивание проводят в аппаратах, называемых отстойниками, или сгустителями. Различают аппараты периодического, непрерывного и полунепрерывного действия, причем непрерывно действующие отстойники, в свою очередь, делятся на одноярусные, двухъярусные и многоярусные.

Периодически действующие отстойники представляют собой низкие бассейны без перемешивающих устройств. Такой отстойник заполняется суспензией, которая остается в состоянии покоя в течение определенного времени, необходимого для оседания твердых частиц на дно аппарата. После этого слой осветленной жидкости декантируют, т. е. сливают через сифонную трубку или краны, расположенные выше уровня осевшего осадка. Последний, обычно представляющий собой подвижную текучую густую жидкую массу - шлам, выгружают вручную через верх аппарата или удаляют через нижний спусковой кран.

Размеры и форма аппаратов периодического действия зависят от концентрации диспергированной фазы и размеров ее частиц. Чем крупнее частицы и чем больше их плотность, тем меньший диаметр может иметь аппарат. Скорость отстаивания существенно зависит от температуры, с изменением которой изменяется вязкость жидкости, причем скорость осаждения обратно пропорциональна вязкости, а последняя уменьшается с увеличением температуры.

Для отстаивания небольших количеств жидкости применяют отстойники в виде цилиндрических вертикально установленных резервуаров с коническим днищем, имеющим крав или люк для разгрузки осадка и несколько кранов для слива жидкости, установленных на корпусе на разной высоте.

Рис. V-3. Отстойник с наклонными перегородками:

1 - штуцер для ввода исходной суспензии, 2- корпус, 3-наклонные перегородки, 4- бункера для осадка, 6 - штуцер для отвода осветленной жидкости.

Для отстаивания значительных количеств жидкости, например для очистки сточных вод, используют бетонные бассейны больших размеров или несколько последовательно соединенных резервуаров, работающих полунепрерывным способом: жидкость поступает и удаляется непрерывно, а осадок выгружается из аппарата периодически.

На рис. V-3 показан отстойник полунепрерывного действия с наклонными перегородками. Исходная суспензия подается через штуцер 1 в корпус 2 аппарата, внутри которого расположены наклонные перегородки 3, направляющие поток попеременно вверх и вниз. Наличие перегородок увеличивает время пребывания жидкости и поверхность осаждения в аппарате. Осадок собирается в конических днищах (бункерах) 4, откуда периодически удаляется, а осветленная жидкость непрерывно отводится из отстойника через штуцер 5.

В промышленности наиболее распространены отстойники непрерывного действия.

Отстойник непрерывного действия с гребковой мешалкой (рис. V-4) представляет собой невысокий цилиндрический резервуар 1 с плоским слегка коническим днищем и внутренним кольцевым желобом 2 вдоль верхнего края аппарата. В резервуаре установлена мешалка 3 с наклонными лопастями, на которых имеются гребки 4 для непрерывного перемещения осаждающегося материала к разгрузочному отверстию 7. Одновременно гребки слегка взбалтывают осадок, способствуя этим более эффективному его обезвоживанию. Мешалка делает от 0,015 до 0,5 об/мин, т. е. вращается настолько медленно, что не нарушает процесса осаждения. Исходная жидкая смесь непрерывно подается через трубу 5 в середину резервуара. Осветленная жидкость переливается в кольцевой желоб и удаляется через штуцер 6. Осадок (шлам) - текучая сгущенная суспензия (с концентрацией твердой фазы не более 35-55%) - удаляется из резервуара при помощи диафрагмового насоса. Вал мешалки приводится во вращение от электродвигателя 5 через редуктор.

Вместе с удаляемым осадком часто теряется значительное количество жидкости, поэтому для уменьшения ее потерь и выделения жидкости из сгущенной суспензии осадок из первого отстойника направляют в другой отстойник для отмывки водой и последующего отстаивания. Осадок, полученный во втором аппарате, будет содержать такое же количество жидкости, что и осадок в первом отстойнике, но уже значительно разбавленной водой. При наличии нескольких последовательно соединенных отстойников можно удалить из осадка до 97-98% жидкости. Для уменьшения количества промывных вод отстаивание проводят по принципу противотока (рис. V-5): осадок последовательно движется из первого отстойника в последний, а вода - в направлении, обратном движению осадка:

Рис. V-4. Отстойник непрерывного действия с гребковой мешалкой:

1 - корпус; 2- кольцевой желоб, 3- мешалка; 4 - лопасти с гребками, 5-труба для подачи исходной суспензии, в - штуцер для вывода осветленной жидкости; 7 - разгрузочное устройство для осадка (шлама); 8 - электродвигатель.

Рис. V-5. Схема непрерывной противоточной отмывки осадка от жидкости.

от последнего отстойника к первому. Промывные воды используют" затем для приготовления исходной суспензии.

Кроме непрерывности действия и большой производительности (составляющей иногда 3000 т/сутки осадка) гребковые отстойники обладают следующими достоинствами: в них достигается равномерная плотность осадка, имеется возможность регулирования ее путем изменения производительности, обеспечивается более эффективное обезвоживание осадка вследствие легкого взбалтывания его мешалкой. Работа таких отстойников может быть полностью автоматизирована. К недостаткам этих аппаратов следует отнести их громоздкость. Гребковые нормализованные отстойники имеют диаметр от 1,8 до 30м, а в некоторых производствах, например для очистки воды, отстойники достигают в диаметре 100 м.

При необходимости установки ряда отстойников значительных диаметров занимаемая ими площадь будет велика. В целях уменьшения этой площади применяют многоярусные отстойники, состоящие из нескольких аппаратов, установленных друг на друга. Различают многоярусные отстойники закрытого и сбалансированного типов.

Простейший многоярусный отстойник закрытого типа (рис. V-6, а) представляет собой несколько отстойников, поставленных друг на друга и имеющих общий вал для гребковых мешалок и соответственно - общий привод. На рис. V-6 для простоты показаны лишь два расположенных один над другим отстойника. В местах прохода

Рис. V-6. Многоярусные отстойники закрытого (а) и сбалансированного (б) типов.

1-распределитель исходной суспензии 2 - труба стакан для ввода суспензии в каждый ярус; 3 - коллектор для сбора осветленной жидкости, 4 - сборник осадка (шлама)

вала сквозь днище каждого отстойника установлены уплотняющие сальники. Таким образом, в этих отстойниках слив осветленной жидкости и выгрузка осадка осуществляются раздельно из каждого яруса.

Более совершенными являются многоярусные отстойники сбалансированного, или уравновешенного, типа (рис. V-6, б) Такие отстойники также имеют общие вал и привод, но, в отличие от отстойников закрытого типа, их ярусы последовательно соединены по шламу: стакан для удаления шлама из каждого вышерасположенного яруса опущен нижним концом в слой сгущенного шлама нижерасположенного яруса.

Отстойники работают следующим образом: исходная суспензия из распределительного устройства 1 подается через стаканы 2 в каждый ярус. Осветленная жидкость через сливные патрубки собирается в коллектор 3. Сгущенный осадок при применении отстойника закрытого типа удаляется раздельно из каждого яруса в сборники 4, а в случае отстойника сбалансированного типа - только из нижнего яруса.

Таким образом, в аппаратах закрытого типа дно каждого яруса воспринимает давление всей массы находящейся в нем суспензии, а у отстойников сбалансированного типа нагрузку на дно испытывает только нижний ярус. В отстойниках сбалансированного типа не требуется специальных уплотнений в местах прохода вала сквозь днища ярусов.

Помимо многоярусных отстойников большая поверхность осаждения достигается также в отстойниках непрерывного действия с коническими полками (рис. V-7). Разделяемая суспензия подается через штуцер 1 и распределяется по каналам между коническими полками 2 (через одну), на поверхности которых происходит осаждение твердых частиц. Осевшие частицы сползают по наклонным полкам к стенкам корпуса и затем перемещаются вниз к штуцеру 3 для удаления шлама. Осветленная жидкость отводится по каналам 4 между двумя вышележащими полками и выводится из аппарата через штуцер 5. Достоинством отстойников этого типа является отсутствие движущихся частей и простота обслуживания.

На рис. V-8 показан непрерывно действующий отстойник для разделения эмульсий. Он представляет собой горизонтальный резервуар, внутри которого против входного штуцера 1 установлена перфорированная отбойная перегородка 2. Она служит для предотвращения возмущений жидкости струей поступающей эмульсии. Поперечное сечение отстойника выбирают таким, чтобы движение жидкости в корпусе аппарата было ламинарным или близким к нему (скорость - несколько мм/сек), что способствует ускорению отстаивания. Легкая жидкая фаза удаляется из аппарата по трубопроводу 3, тяжелая - по трубопроводу 4.

Рис. V-7. Отстойник непрерывного действия с коническими полками:

1 - штуцер для подвода разделяемой суспензии; 2 - конические полки; 3 - штуцер для отвода шлама; 4 - каналы для отвода осветленной жидкости; 5 - штуцер для вывода осветленной жидкости.

На последнем имеется устройство 5 для разрыва сифона, предупреждающее полное опорожнение резервуара.

Рис. V-8. Отстойник непрерывного действия для разделения эмульсий:

1 - штуцер для подвода эмульсии; 2 - перфорированная перегородка; 3 - трубопровод для отвода легкой фазы; 4 - трубопровод для отвода тяжелой фазы; 5- устройство для разрыва сифона.

Для наглядного рассмотрения процесса осаждения твердой частицы в форме шара обозначим ее диаметр как d, ее плотность - ρ т, а плотность жидкости, в которую она погружена - ρ ж. В этом случае существует обязательное условие, которое будет выглядеть как ρ т >ρ ж.

Когда частицу вводят в жидкость с начальной скоростью движения, равной нулю, она начинает двигаться ускоренно, а соотношение сил, действующих на нее, можно описать следующим уравнением:

T = A-R = J, (a)

Теперь следует расписать значение каждой компоненты уравнения:

  1. T = πd³/6 · ρ T g - сила тяжести, которая равна массе частицы.
  2. A = πd³/6 · ρ ж g - сила выталкивания, равная массе объема жидкости, вытесненной частицей согласно закону Архимеда.
  3. R = φ · πd²/4 · W² ос /2 · ρ ж - сила сопротивления, которая имеет прямое отношение к поперечному сечению частицы F = πd²/4.
  4. J = m·dW ос /dτ - сила инерции (где m - масса частицы, ϕ - коэффициент сопротивления, W ос скорость осаждения частицы).
  5. Τ - компонент время.

С увеличением скорости растет и сила сопротивления, стремящаяся уменьшить ускорение частицы. По истечении некоторого промежутка времени ускорение становится равным нулю.

Если величина скорости осаждения постоянна, то силы, действующие на частицу, будут представлены в виде следующей формулы:

T-A-R = 0; (б)

Из последующего рассмотрения вполне можно исключить отрезок времени движения частицы с ускорением (достаточная точность для технических расчетов позволяет это сделать), по той причине, что начальный период времени, за которое она достигает скорости осаждения, слишком мал в соотношении со всей длительностью процесса осаждения.

Учитывая данное обстоятельство, уравнение (б) можно представить более подробно:

π(d³/6)·ρ T g - π(d³/6)·ρ ж g - φ(πd²/4)·(W² ос /2)·ρ ж = 0 (в)

Из этого уравнения можно вывести скорость осаждения:

W ос = √ / (3ρ ж φ)  (г)

Выделяется три режима осаждения - турбулентный, переходный и ламинарный. В каждом из них твердую частицу жидкость обтекает особым образом. Область того или иного режима осаждения определяется параметрами величины, называемой критерий Рейнольдса:

Re = W ос dρ ж /μ ж  (д)

При небольших значениях Re жидкость обтекает частицу максимально плавно и без вихрей в ее кормовой части. Коэффициент сопротивления в этом случае обычно представляют уравнением:

φ = 24/Re (е)

В этом случае сила сопротивления вычисляется результатами сопротивления трения на поверхностях частицы, к тому же, она является пропорциональной первой степени скорости.

Вторая область, переходный режим осаждения частицы, находится в пределах изменений значения критерия Рейнолдса: 1,85 < Re < 500.

Если Re увеличивается, в кормовой части осаждающейся частицы появляется, так называемая, застойная зона, в замкнутом пространстве которой происходит вихревое (циркуляционное) движение. Если значения коэффициента Re не очень значительны, то все вихри весьма устойчивы. Если число Re постоянно растет, то интенсивность вихрей тоже увеличивается. Течение процесса теряет устойчивость, и можно наблюдать, как вихри периодически срываются с поверхности частицы и от них образуется видимый след. В конечном итоге основной долей становится лобовое сопротивление.

Коэффициент в этом случае рассчитывается согласно уравнению:

φ = 18,5/Re 0,6  (ё)

При дальнейшем росте коэффициента Re выше величины 500, величина сопротивления остается почти постоянной и не зависит от значения Re (автомодельная область).

При данном варианте развития событий вихри начинают регулярно отрываться от поверхности кормовой части частицы, и этот режим имеет название турбулентный. Это означает, что в таком случае сила сопротивления пропорциональна скорости во 2-й степени, а сам коэффициент сопротивления определяется лобовым сопротивлением и имеет величину:

φ = 0,44 (ж)

Воспользовавшись одновременно рядом уравнений (г) и (е - ж), появляется возможность определить скорость осаждения с помощью метода последовательных приближений. Для этого сопоставляют предварительное и полученное значения w ос и повторяют расчеты, пока не будет достигнута нужная точность.

Такие расчеты являются весьма трудоемкими и недостаточно удобными, однако этого можно избежать при преобразовании уравнения (г) в критериальное. Для этого берут уравнение (г) и назначают величину ϕ как функцию стальных параметров:

φ = ·[(ρ т -ρ ж)/ρ ж ]· (з)

φRe² = ·[(gd³ρ ж (ρ т -ρ ж))/μ² ж ] (и)

Безразмерная совокупность правой части выражения является критерием Архимеда:

Ar = (gd³ρ ж (ρ т -ρ ж))/μ² ж  (й)

Из уравнения (и) выходит:

Re = 1,15·(Ar/φ) 0,5  (к)

Подставив в полученную формулу значение коэффициента ϕ из выражений (е - ж), выводится критериальное уравнение, с помощью которого и рассчитывается скорость осаждения.

В ламинарном режиме это имеет вид:

Re = Ar/18 (л)

В переходном:

Re = 0,152(Ar) 0,715  (м)

В турбулентном.