Схема плавного включения лампы накаливания своими руками. «Вечная лампа» накаливания своими руками Плавное включение ламп накаливания 500вт схема


Ситуация, когда лампа накаливания выходит из строя и при этом по помещению разлетается множество опасных осколков, отнюдь не нова. Причем это может произойти как с давно работающим экземпляром, так и с установленным совсем недавно. Они перегорают в момент их включения, поскольку в течение очень короткого промежутка времени (буквально десятые доли секунды) величина тока, который приходит к нити накаливания значительно выше его номинального значения, но этого бывает достаточно, чтобы она перегорела.

Исправить ситуацию позволит плавное включение ламп накаливания , основой которого является устройство — блок защиты, которое позволяет обеспечивать достаточно медленный (2-3 с) розжиг вольфрамовой спирали. Его можно изготовить самостоятельно, либо приобрести в уже готовом виде.

Особенности выбора блока защиты

Выбирая такое устройство, следует учитывать общую величину нагрузки , которую легко рассчитать, учитывая число ламп накаливания и их мощность. К этому значению необходим запас мощности, лучше, если это значение составит примерно четверть от полученного значения. Это позволит продлить срок эксплуатации устройства, обеспечивающее плавное включение ламп накаливания. Перегрузка блока недопустима, поскольку это приведет к значительному перегреву всех элементов, и он быстро сломается.

Одним из приемлемых вариантов можно считать устройство Uniel Upb-200W-BL . К нему можно подключить люминесцентные лампы общей мощностью не более 160Вт . Только следует иметь в виду, что использование защитного блока приводит к падению напряжения, поэтому нагрузка заметно снижается и составляет всего 171В.

ВАЖНО! Если у лампы накаливания поступающие напряжение снизить на 10%, то уменьшение светового потока составит 44% .Падение напряжения, вызванное применением блока защиты, снижает этот показатель практически на 70%.

Учитывая данную особенность нужно использовать лампы с большей мощностью и в соответствии с ней подбирать блок защиты.

Принцип его работы отличается простотой: к лампе подводиться напряжение, которое в течение нескольких секунд постепенно увеличивается до нормального уровня. Так значительно снижается величина пускового тока, что позволяет увеличить продолжительность работы ламп накаливания.

Самостоятельное изготовление блока защиты

Схема плавного включения ламп накаливания не отличается особой сложностью, но при этом нужно учитывать массу особенностей, при этом соблюдая все действующие нормативы, предъявляемые к электротехническим устройствам. Но далеко не все схемы дают нужный результат, поэтому приведем один из наиболее интересных вариантов таков изделия.

На этой схеме плавного включения ламп накаливания наглядно демонстрируется включение лампы и устройства, при этом полярность проводов не очень важна. Но важно подключить это устройство в разрыве фазного провода , таким образом обеспечив последовательное соединение с выключателем, который должен быть одноклавишным. Приведем пояснения к схеме:

  • Полевой транзистор при начальном цикле работы устройства находиться в закрытом состоянии и именно на него падает напряжение стабилизации, поскольку он входит в состав диагонали диодного моста. В это время лампа не горит.
  • Конденсатора С1 начинает заряжаться при поступлении напряжения через резистор (R1) и диод (VD1) пока не достигнет уровня 9,1В, который не может быть превышен, поскольку его ограничивает стабилитрон.
  • При достижении напряжением заданного уровня, начнется постепенное открывание транзистора, сопровождающееся увеличением значений тока, при этом напряжение на стоке будет уменьшаться. Начнется плавный розжиг нити накаливания лампы.
  • Наличие второго резистора является необходимостью, поскольку позволяет конденсатору разряжаться после того момента, когда произойдет выключение питания лампы. В это время значение напряжения на стоке будет невелико — около 0,85В при силе тока в 1А.

Очень важно, что такая схема плавного включения ламп накаливания обеспечивает работу без мерцания, что очень важно для комфортности пребывания в помещении. Ее можно использовать для ламп работающих, как от стандартного напряжения в 220В, так и от пониженного.

Где устанавливать устройства защиты

Небольшие габариты этого устройства позволяют монтировать их в разных местах, но при этом необходимо обеспечить беспрепятственный доступ к нему, в случае если понадобиться ремонт или полная замена.

Не менее важно обеспечить прибор притоком воздуха, который необходим для охлаждения его элементов, которые должны обеспечивать плавное включение ламп накаливания. Для этого в его корпусе должны быть прорези либо отверстия , что необходимо учитывать при создании подобных устройств собственными руками.

ВАЖНО! Устройства для плавного включение ламп накаливания низкого напряжения нужно устанавливать до места расположения трансформатора.

Чаще всего встречаются следующие варианты расположения:

  • На потолке . Этот вариант наиболее распространен. В этом случае его устанавливают в основании осветительного прибора либо в непосредственной близости с ним.
  • В подрозетнике выключателя , распредкоробке.

ВАЖНО! Такое устройство защиты не рекомендуется устанавливать в помещениях с высокой влажностью.

Устройства защиты ламп накаливания позволяют значительно увеличить их ресурс, но устанавливать их, а тем более конструировать, нужно соблюдая правила и действующие нормативы, и имея хотя бы начальные знания в области монтажа электрических приборов. В противном случае для выполнения таких работ целесообразно пригласить профи.

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Скорость нарастания напряжения зависит от схемотехники устройства, обычно 2–3 секунды от 0 до 220 В.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

Готовые решения

Блоки защиты для светильников продаются практически в каждом магазине бытовых и электротоваров. Такой блок может называться иначе, чем было сказано выше, например: «Устройство защиты галогеновых ламп и ламп накаливания» или другое подобное название. Как уже отмечалось, при покупке, главное, на что следует обратить внимание – это мощность блока розжига.

Широкую линейку таких устройств выпускают под торговой маркой «Гранит».

Предложение от «Гранит»

Есть и миниатюрные блоки Navigator их можно удобно спрятать в распредкоробку, если она не набита проводами доверху. Также поместится внутрь большинства светильников, например, в основание настольной лампы, или между потолком и люстрой, если есть такая возможность.


Компактный блок защиты

Схемы

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Вариант реализации схемы

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.


Схема с симистором

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг. Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор.

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

а ниже изображена схема устройства, она предельно проста:


Простая схема

Или вот ее модернизированный вариант для включения мощной нагрузки:


Проработанная схема

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

Плавное включение ламп 12 В

Часто для точечных светильников используются лампы с напряжением 12 В. Для преобразования 220 в 12 В в настоящее время используют электронные трансформаторы. Тогда устройство плавного включения нужно подключать в разрыв питающего провода электронного трансформатора.


Плавное включение ламп в автомобиле

Если стоит задача организовать плавное включение автомобильных ламп 12 V, то здесь такие схемы не подойдут. В электроцепи автомобиля используется напряжение 24 или 12 V постоянного тока. Здесь можно применить линейные или импульсные схемы так называемые ШИМ-регуляторы.

Простейшим вариантом будет использование двухступенчатой схемы включения.

Двухступенчатая схема включение

Эта схема устанавливается параллельно включаемым лампам. Сначала ток течет через резистор, а лампы горят тускло. Через небольшое время, порядка полсекунды, включается реле, и ток течет через его силовые контакты, они в свою очередь шунтируют резистор и лампы зажигаются на полную яркость.

Номинал резистора от 0,1 до 0,5 Ом, он должен быть большой мощности – около 5 Вт, например, в керамическом корпусе.

Второй вариант – собрать импульсный блок для плавного розжига. Его схема сложнее:


Более сложный для реализации вариант

Список компонентов:

  1. Резисторы:
  • R1=2 k.
  • R2=36 k.
  • R3=0,22.
  • R4=180.
  • R5, 7=2,7 k.
  • R6=1 M.
  1. Конденсаторы:
  • C1=100 n.
  • C2=22×25 B.
  • C3=1500 p.
  • C4=22×50 B.
  • C5=2 мкф.
  1. Микросхема MC34063A или МС34063А, или КР1156ЕУ5.
  2. Полевой транзистор IRF1405 (или любой N-канальный с похожими параметрами: IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077).
  3. Дроссель 100 мкГн, на ток не менее 500 мА.
  4. Светодиоды.
  5. Диоды 1N5819.

Время включения регулируется цепью R6C5. Увеличьте емкость, чтобы увеличить время.

Если вам сложно сделать такую схему, можете купить готовую сборку, типа автоконтроллера ЭКСЭ-2А-1 (25 А/IP54) или любой другой подходящий. В конкретно этой модели есть 2 канала, под каждую фару, 8 программ работы. Он основан на микроконтроллере PIC.


Лампа накаливания и её особенности

: лампочки, при их высокой цене, быстро ломаются. Из-за большой экономии при производстве и некачественного люминофора, они дают весьма неприятный для глаз свет, разбавленный, к тому же, ультрафиолетом. Всё это заставляет вновь вернуться к проверенным, хорошим лампам накаливания.

Однако, большая экономия при их производстве и здесь наложила свой отпечаток. Лампочки стали настолько некачественными, что нередко перегорают при первом же включении, либо работают очень недолгое время, вплоть до нескольких недель. Затем - неизбежное перегорание.

В связи с этим фактом, а также с обещанным запретом на производство ламп накаливания , сам собой возникает вопрос о продлении срока их службы. Начнём с очень краткой теории. Почему перегорает лампочка , причём делает она это именно в момент включения? Всё очень просто. В момент включения нить накала лампы холодная, следовательно, сопротивление её мало. При подаче напряжения возникает бросок тока. По мере разогрева нити, её сопротивление увеличивается и ток уменьшается. Но тот, самый первый бросок тока, и приводит к перегоранию нити, особенно если учесть, что лампа произведена с экономией всего, чего только можно. Задача вырисовывается простая: нужно уменьшить пусковой ток. В идеале - сделать его плавно нарастающим от 1% до 100%. В этом случае получится ещё и эстетическое удовольствие от вида плавно разгорающейся лампы.

Изучение готовой продукции в магазинах позволило сделать печальный вывод: китайские друзья не смогли освоить производство подобных защитных устройств, которые бы работали так, как надо. Разумеется, такие устройства есть в продаже, но все, что попались нам, глючили одинаковым образом: при включении происходила вспышка лампы, затем она гасла и только потом начинала плавно разгораться. Как Вы понимаете, вспышка в начале сводит на нет всё дальнейшее действо.

Изучение конструкций, предлагаемых в интернете, также дало весьма печальный результат: нет ни одной нормальной схемы устройства защиты ламп накаливания. Под видом оных в радиолюбительских журналах выдаются различные поделки, которые слишком далеки от того, что нужно. В лучшем случае, они на несколько секунд отсекают одну полуволну сетевого напряжения, снижая напряжение на лампе в момент включения. Но мерцание в этот момент - вещь совершенно недопустимая для зрения людей, особенно - дома! Конструкции же, дающие плавное разжигание, построены на полевом транзисторе, загнанном в линейный режим, который включен в диагональ диодного моста. А это - нагрев и лишнее падение напряжения. Нужно ли оно нам?

В итоге было решено придумать собственный вариант, который бы удовлетворял основным условиям:
1. Плавное включение лампы от 1% до 100%
2. Возможность регулирования времени разгорания
3. Минимальные нагрев коммутационного элемента и падение напряжения на элементах силовой части схемы

Как удалось реализовать эти пункты:
1. Фазоимпульсное регулирование
2. Программное задание значения переменных
3. Применение симистора (триака) в качестве единственного элемента между сетью и лампой

Принцип и схемы - типичные для любого диммера на микроконтроллере. От этих схем практически целиком взята аппаратная часть: это - правильное управление симистором через оптопару, а также детектор перехода сетевого напряжения через ноль на оптопаре.

Как работает устройство: микроконтроллер ATtiny13A получает прерывание в момент перехода сетевого напряжения через ноль в начале каждого полупериода. В процедуре обработки прерывания он уменьшает время паузы до формирования импульса открытия симистора. Таким образом с каждым прерыванием симистор открывается всё раньше, на всё большее время. В конце на вывод управления симистором подаётся логическая единица и микроконтроллер прекращает реагировать на прерывания. Программно можно задать любую скорость включения лампы. В базовом варианте это время составляет около двух секунд.

Процесс работы представлен на виртуальной осциллограмме (все напряжения смасштабированы для удобства). Красная синусоида - это сетевое напряжение. Жёлтые импульсы - срабатывание детектора перехода через ноль. Голубые импульсы - открытие симистора.

Схема устройства защиты ламп накаливания представлена ниже. Как уже было сказано, она представляет собой типичный диммер, который программно плавно увеличивает мощность от минимума до максимума.


В схему введена цепочка защиты сети от помех (резистор 100 Ом и конденсатор 10н параллельно симистору), возникающих при фазоимпульсном регулировании в начале работы. Микроконтроллер ATtiny13A питается от бестрансформаторного источника на гасящем конденсаторе.

Резистор помехоподавляющей цепочки 100 Ом должен иметь мощность 0,5Вт, гасящий резистор перед диодным мостом детектора ноля на 82к - 1Вт. Токоограничительный резистор на 300 Ом в цепи питания микроконтроллера должен иметь мощность 2Вт, гасящий конденсатор на 470н в этой же цепи должен быть на напряжение 630 вольт.


Печатная плата нарисована фломастером, вытравлена медным купоросом , и содержит всего два недочёта, устранённых с помощью проводков. Выведены сигналы для внутрисхемного программирования. Малый размер позволяет разместить устройство защиты прямо в люстре. Размеры платы можно ещё уменьшить, если развести её более компактно.


Внимание! Устройство гальванически связано с сетью, поэтому работать, соблюдая технику безопасности, не прикасаясь руками к схеме.

Прошивки (прошивать на Internal RC 9,6MHz):
UP 19.06.2014 Устройство встроено в люстру 1 июня 2014 года. На этот момент в ней находились две поработавших лампочки. 19 июня добавлена одна новая лампочка. Попробуем собрать некую статистику по срокам службы ламп.

UP 24.11.2014 Упрощена схема устройства: убраны помехозащитная цепочка и опторазвязка симистора.

В связи с этим уменьшены размеры печатной платы


Файл Eagle: soft_start_2.brd


Через полчаса работы с прошивкой v2.0: R1 (SMD 2512), R2 (0.25Вт), D3 - тёплые, T1 - горячий (без радиатора, нагрузка - 150 Вт). Мощность резистора R2 должна быть больше, как рекомендовано в первом варианте схемы.

В этом варианте обнаружился досадный глюк: в момент включения симистор на мгновение иногда открывается (приблизительно в 20% случаев). Иногда этого мгновения хватает, чтобы еле заметно разогреть нить лампы. Не критично, но, всё-таки, это - глюк. Первой же строкой программы поставлено выставление логического нуля на управляющий электрод, однако это не помогает. Причина такого поведения - контроллер или симистор. Попытка решения реализована в прошивке версии 2.1.

UP 15.01.2015 Упрощённый вариант устройства введён в работу. Проверяем.

UP 28.09.2015 Первоначальный (полный) вариант сегодня сломался: в одной из лампочек всё-таки перегорела нить накала, образовалась дуга, что привело к значительному повышению потребляемого тока и выходу из строя симистора. Вариантов доработки два: установка предохранителя или программный контроль тока. По поводу второго пока думаем.

Исходник для Bascom:

$regfile = "attiny13a.dat" $crystal = 9600000 " управление симистором Config Portb.4 = Output "Portb.4 = 0 " детектор нуля Config Int0 = Falling On Int0 Imp Config Timer0 = Timer , Prescale = 1024 "переполнение за 0,032 сек On Timer0 Pulse Dim W As Byte Dim I As Byte Enable Interrupts Enable Timer0 "Start Timer0 Enable Int0 W = 200 "минимальный накал при старте I = 0 Do Loop End " прерывание от детектора нуля " чем большее значение W, тем быстрее переполнится таймер Imp: Timer0 = W Start Timer0 Incr I If I = 5 Then Incr W I = 0 End If If W = 255 Then Stop Timer0 Disable Timer0 Disable Int0 Disable Interrupts Portb.4 = 1 " если нужно отправить МК в сон Powerdown End If Return " управление симистором Pulse: "переполнение таймера Stop Timer0 "останавливаем таймер Portb.4 = 1 "включение симистора Waitus 100 Portb.4 = 0 "выключение оптосимистора Return

Если к устройству будет интерес, проект будет развиваться и совершенствоваться. Пожалуйста, выражайте интерес, ставя лайки статье в социальных сетях (кнопки в конце статьи).

В любой электрической схеме, каждый датчик или элемент осуществляет определенную работу. В данном случае, это устройства, обеспечивающие плавный запуск различных источников света. Важно понимать, что самые высокие перегрузки, лампочки испытывают во время их запуска. Так как после подачи на них напряжения, сильно изменяется температура и напряжение, которое скачет от 0 до 220 Вольт. Для того, чтобы снизить нагрузки, используют различные датчики и устройства, которые встраивают в схему.

Лампы накаливания электрические: виды

Не смотря на то, что в настоящее время достаточно популярно стало использование в различных осветительных приборах галогенных, люминесцентных и светодиодных ламп (светодиодов), огромная часть устройств работает на основе ламп накаливания. Данные источники света, подразделяют на виды по различным параметрам.

Основные параметры:

  • Предназначение;
  • Технические характеристики (устройство).

По назначению, лампы накаливания, можно разделить на два вида. Для работы в различных бытовых осветительных приборах, и в автомобиле. Как правило, в бытовых приборах освещения (в квартире)применяют лампы накаливания 220 В, 24 В и 12 Вольт. В авто (для фар), применяют только низковольтные источники света.

Обратите внимание! В настоящее время, лампы накаливания, являются самыми дешевыми источниками света.

К техническим характеристикам ламп, относят различные показатели. Например, Лампы подразделяют по форме колбы. Существуют Шарообразные, цилиндрические и трубчатые колбы. Колбы бывают матовыми, прозрачными и зеркальными.


Стоит отметить, что к основным техническим характеристикам ламп, относят ее мощность, которая варьируется в пределах 25 – 150 Ватт.

Рабочее напряжение лам составляет (в зависимости от вида лампы) от 12 до 230 Вольт. Лампы накаливания отличаются и видом цоколя. Например, цоколь может быть с резьбой или в виде штифта, одним или двумя контактами.

Резьбовые цоколи различают по диаметру и маркируют следующим образом: (Е 14) – диаметр цоколя 14 мм, (Е 27) и (Е40).

Медленное (плавное) включение ламп накаливания

Плавный пуск или розжиг ламп накаливания, легко сделать своими руками. Для этого существует не одна схема. В некоторых случаях, после отключения подачи напряжения, делают и плавное выключение ламп.

Основные схемы:

  • Тиристорная;
  • На симисторе;
  • С использованием микросхем.

Тиристорная схема подключения, состоит из нескольких основных элементов. Диод, в количестве четырех штук. Диоды в данной схеме образуют диодный мост. Для обеспечения нагрузки, используют лампочки накаливания.

К плечам выпрямителя, подключается тиристор и цепочка сдвигающая. В этом случае, используют диодный мост, так как это обусловлено работой тиристора.


После того, произведен запуск, и на блок подано напряжение, электричество, проходит через нить накаливания лампы и подается на диодный мост. Далее, при помощи тиристора, емкость электролита заряжается.

После того, как достигнута необходимая величина напряжения, тиристор открывается и через него начинает проходить ток от лампы. Таким образом, происходит плавный запуск лампы накаливания.

Обратите внимание! В качестве составных элементов в различных схемах, могут использоваться отличные друг от друга детали. Такие как: mac 97 a 6, m 51957 b, av 2025 p, mc908 qy 4 pce,ba 8206 ba 4, ba 3126 n, 20 wz 51, 4n 37.

Схема с использованием симистора простая, так как симисторы является силовым ключом в схеме. Для регулировки тока управляющего электрода, используют резистор. Время срабатывания, задается при помощи нескольких элементов схемы, резистора и емкости, питающиеся от диода.

Для работы нескольких мощных ламп накаливания, используют различные микросхемы. Это достигается путем добавления в схему дополнительного силового симистора. Стоит отметить, что данные схемы работают не только с обычными лампами, но и с галогенными.

Схема плавного розжига светодиодов на полевиках

Существует огромное количество схем для плавного розжига светодиодов. Некоторые являются сложными и могут состоять из дорогостоящих деталей. Но можно собрать и простую схему, которая обеспечит корректную и долгую работу данного источника света.

Для сборки потребуется:

  • Полевой транзистор – IRF 540;
  • R1 – сопротивление с номиналом 10 кОм;
  • R2 – сопротивление от 30 кОм до 68 кОм;
  • R3 – сопротивление от 20 до 51 кОм;
  • Конденсатор с емкостью 220 мкФ.

Так как сопротивление R1 (регулятор), задает ток затвора, то для данного транзистора, достаточно сопротивления в 10 кОм. За плавный пуск светодиодов, отвечает сопротивление R2, то его номинальное сопротивление необходимо подобрать в пределах от 30 до 68 кОм. Данный параметр зависит от предпочтений.

Медленное затухание светодиодов обеспечивает сопротивление R3, поэтому его номинал должен составлять от 20 до 51 кОм. Емкостные параметры конденсатора варьируются в пределах от 220 до 470 мкФ.


Обратите внимание! Предельное напряжение конденсатора должно быть не менее 16 Вольт.

К мощностным параметрам полевого транзистора относят напряжение и силу тока. Напряжение на контактах достигает 100 Вольт, а мощность до 23 Ампер.

После того, как через выключатель подано напряжение на схему, протекающий через резистор R2 ток, начинает заряжать конденсатор. Так как зарядка занимает некоторое количество времени, то в данном случае, производится плавное открытие транзистора.

При отключении подачи питания, конденсатор, плавно отдает заряд сопротивлениям, что позволяет выключать светодиоды плавно.

Плавный розжиг галогенных ламп в автомобиле

В различных авто, перегрузкам подвергаются не только механические детали, их испытывают и элементы, составляющие электрические схемы. Поэтому, для увеличения продолжительности работы оборудования, в схемы включают различные устройства, обеспечивающие плавный запуск ламп.

Основные параметры для установки блоков плавного розжига:

  • Вибрация;
  • Температурные и электрические перепады.

Лампы с повышенной светоотдачей, согласно устройству, очень чувствительны к незначительным перепадам напряжения в электрической схеме. Данные перепады варьируются от 10 до 13 Вольт.

Обратите внимание! Большинство галогеновых ламп выходят из строя во время запуска. Так как перепад напряжения составляет от 0 до 13 Вольт.

Лучшим решением, будет установка блока плавного розжига. Установка возможна на фары ближнего и дальнего света, Стоит отметить, что данное реле, играет роль защиты источника света.

Важно понимать, что установка одного блока на лампы, отвечающие за головной свет, не рекомендуется, так как при выходе из строя блока, работать перестанут обе лампы. Установка одного блока, возможна толк на дополнительное освещение.

Блок, выполнен в виде реле, оснащенного пятью контактами для подключения. Основными элементами блока, являются контакты реле (силовая часть) и блок управления.

Работа данного блока, осуществляется следующим образом. После того, как на тридцатый контакт подано напряжение, блок осуществляющий управление схемой, параллельно подключает ключ. Далее ключ, используя импульсы по нарастающей, начинает замыкать между собой 30 и 87 контакты.

После двух секунд работы, данные контакты полностью замыкаются, после чего управляющий блок, подает напряжение на реле. Далее, 30 и 87 контакты размыкаются, и 30 и 88 замыкаются. Если подать напряжение на дополнительный 86 контакт, то при выключении фар, галогеновые лампы будут медленно затухать.

Схема плавного включения ламп накаливания на 220 В (видео)

Теперь вы понимаете, что встраивание в различные электрические схемы дополнительных элементов не только может обеспечить их плавный запуск, но и выступить в качестве защитного механизма, который обеспечит длительную работу ламп.

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала.
Любую из схем можно самостоятельно собрать на плате небольшого размера.

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Читайте так же