Электрические схемы бесплатно. Схема преобразователей для варикапов

Использование варикапов в переносных радиоприемниках вынуждает использовать для их питания преобразователи напряжения, повышающие напряжение источников питания примерно до 20 В. В таких преобразователях часто используют повышающие трансформаторы, которые трудоемки в изготовлении. Их магнитные поля могут стать источниками помех, особенно в малогабаритных радиоприемниках.

Этих недостатков лишен преобразователь, собранный по схеме рис. 95,а. Он не содержит намоточных деталей и практически не нуждается в налаживании. Элементы DD1.1 и DD1.2 образуют генератор прямоугольных импульсов, элементы DD1.3 и DD1.4 используются в качестве буферных. В умножителе напряжения работают диоды VD1—VD6, конденсаторы СЗ—С7, конденсатор С8 служит для сглаживания выпрямленного напряжения, а на транзисторах VT1—ѴТЗ и резисторе R2 собран параметрический стабилизатор напряжения. Здесь в качестве стабилитронов используются обратносмеіценные эмиттерные переходы транзисторов, у которых режим стабилизации наступает уже при токе 5… 10 мкА.

Рис. 95. Схема (а) и монтажная плата преобразователя напряжения для питания варикапов (б)

Все детали преобразователя можно смонтировать на печатной плате размерами 30X40 мм (рис. 95,б). Налаживания преобразователя не требуется, в случае необходимости выходное напряжение можно изменить подбором транзисторов VT1—ѴТЗ, для этих целей подойдут транзисторы КТ316, КТ312, КТ315 с любыми буквенными индексами.

Рассмотрим краткие характеристики макета преобразователя, собранного но данной схеме. При изменении напряжения питания от 6,5 до 9 В потребляемый ток увеличивается от 0,8 до 2,2 мА, а выходное напряжение — не более, чем на 8 … 10 мВ.

При необходимости выходное напряжение преобразователя можно поднять путем увеличения звеньев умножителя напряжения и числа транзисторов в параметрическом стабилизаторе.

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Предлагаю простую и надежную схему преобразователя напряжения для управления варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным.

На диодах VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа.

Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей.


Обсудить на форуме

На момент добавления Преобразователь напряжения для варикапов все ссылки были рабочие.
Все публикации статей, книг и журналов, представлены на этом сайте, исключительно для ознакомления,
авторские права на эти публикации принадлежат авторам статей, книг и издательствам журналов!

Поскольку снижение емкости конденсатора недопустимо из-за увеличения пульсации, было решено заменить преобразователь со стабилизатором устройством, в котором выходное напряжение поддерживается неизменным отрицательной обратной связью (ООС), управляющей работой автогенератора.

Принципиальная схема нового преобразователя напряжения показана на рисунке. Цепь регулируемой ООС образована полевыми транзисторами VT3 (регулятор напряжения смещения), VT4 (усилитель), VT5 (генератор тока). Работает устройство следующим образом. В момент включения питания, когда напряжение на выходе преобразователя отсутствует, транзисторы VT4. VT5 обесточены. После запуска генератора на транзисторах VTI. VT2 на выходе преобразователя возникает постоянное напряжение и через цепь RЗVT5R4R5) течет ток.

По мере роста выходного напряжения он увеличивается, пока не достигнет некоторого предела, зависящего от сопротивления резистора R3.

Дальнейшее увеличение выходного напряжения преобразователя сопровождается ростом напряжении на участке исток -затвор транзистора VT4 и когда оно становится больше напряжения отсечки, транзистор VT4 открывается. С ростом напряжения на резисторе R2 транзистор VT3 начинает закрываться и напряжение смещения на базах транзисторов VTI. VT2 уменьшается. В результате увеличение выходного напряжения прекращается и оно стабилизируется.

При разрядке батареи питания или увеличении нагрузки выходное напряжение преобразователя несколько уменьшается, но вслед за этим увеличивается напряжение смещения транзисторов автогенератора и первоначальное значение выходного напряжения восстанавливается. Как показала проверка, при снижении напряжения питания с 4,5 до 1,5 В выходное напряже-чие остается практически неизменным, а при увеличении до 10 В возрастает всего на 0,2 В.

Поскольку в описанном устройстве полевые транзисторы работают в микротоковом режиме, а в автогенераторе использованы среднечастотные транзисторы КТ201В, ток, потребляемый преобразователем, удалось снизить с 32 до 5 мА. Выходное сопротивление преобразователя 160 Ом (у прежнего — 5 кОм). время установления выходного напряжения 0.1 с.

Для изготовления преобразователя частично были использованы детали старого устройства: трансформатор автогенератора, конденсаторы емкостью 100 и 5 мкф, резистор сопротивлением 27 Ом и диоды Д223Б, а также алюминиевый экран, форма колебаний автогенератора близка к меандру, однако рациональное расположение деталей на печатной плате и экранирование преобразователя позволили практически полностью избавиться от помех.

Налаживание устройства свидится к проверке работоспособности автогенератора и установке требуемого выходного напряжения вначале подбором резистора R3 (грубо), а затем подстроенным резистором R4 (точно).

Этот экономичный преобразователь напряжения для питании варикапов можно применить в любом другом транзисторном приемнике.

Зависимость емкости варикапа \(C\) от приложенного обратного напряжения \(U_{обр}\) приблизительно определяется соотношением:

\(C \approx \cfrac{K}{ {\left(U_{обр} + \varphi_к \right)}^n } \),

    \(K\) - постоянная величина, зависящая от геометрических размеров и физических свойств перехода (диэлектрической проницаемости материала),

    \(\varphi_к\) - контактная разность потенциалов перехода, равная 0,8...0,09 В для кремниевых варикапов и 0,35...0,45 для германиевых;

    \(n\) - показатель, зависящий от концентрации примесей в переходе, т.е. от технологии изготовления диода.

В наиболее распространенных в настоящее время варикапах \(n\) < 0,5. Большие значения встречаются в диодах, которые имеют повышенный коэффициент перекрытия по емкости.

Эквивалентная схема варикапа при работе в режиме обратного смещения представлена на рис. 3.6-52 (в схеме не показаны индуктивность выводов и емкость корпуса).

Рис. 3.6-52. Эквивалентная схема варикапа

    \(R_ш\) - сопротивление потерь запирающего слоя,

    \(R_п\) - последовательное сопротивление потерь материала полупроводника и контактов,

    \(C_б\) - барьерная емкость перехода.

Добротность варикапа зависит от сопротивления материала и от сопротивления потерь запирающего слоя (сопротивления утечки). Общее выражение для добротности варикапа:

\(Q = \cfrac{\omega C R_ш}{\omega^2 C^2 R_п R_ш + 1} \)

В общем случае значения \(R_п\) и \(R_ш\) также зависят от частоты сигнала. На низких частотах преобладающими являются потери в переходе, которые падают с увеличением частоты, т.е. добротность варикапа растет. На высоких частотах значительными становятся потери в материале полупроводника, а добротность варикапа падает. Частота, на которой добротность варикапа имеет максимальное значение:

\(f_0 = \cfrac{1}{2 \pi \sqrt{R_п R_ш}}\)

при этом выражение для максимальной добротности:

\(Q_{max} = \cfrac{1}{2} \sqrt{\cfrac{R_ш}{R_п}}\)

Обычно варикапы используются на частотах приблизительно на порядок выше \(f_0\) .

Добротность варикапа существенно зависит от емкости перехода, которая, в свою очередь, зависит от величины приложенного напряжения. В результате с увеличением этого напряжения добротность варикапа увеличивается. Верхней границей управляющего напряжения является максимально допустимое обратное напряжение перехода, а нижняя определяется моментом открывания перехода. Чтобы переход все время оставался обратно смещенным, минимальная величина управляющего напряжения в предельном случае должна быть не меньше амплитуды переменного напряжения ВЧ сигнала на перестраиваемом контуре. Кроме того, минимально допустимое управляющее напряжение определяется величиной допустимых искажений формы резонансной кривой контура. В случае, если амплитуда сигнала соизмерима с величиной управляющего напряжения, средняя емкость варикапа не будет равна емкости, измеренной при малом сигнале, так как емкость за один полупериод ВЧ сигнала будет изменяться больше, чем за другой (рис. 3.6-53). Поэтому с ростом амплитуды сигнала контур расстраивается и его добротность падает.

Рис. 3.6-53. Искажение сильного сигнала при малом значении управляющего напряжения

Поскольку, как было показано выше, с увеличением управляющего напряжения добротность варикапа увеличивается, целесообразно выбирать возможно более высокие величины управляющих напряжений. Однако с увеличением управляющего напряжения крутизна вольт-фарадной характеристики варикапа уменьшается, т.е. при больших величинах управляющих напряжений для перекрытия заданного диапазона частот необходим больший диапазон изменения управляющего напряжения. Коэффициент перекрытия рабочего диапазона частот дополнительно уменьшается из-за наличия собственной емкости контурной катушки и других подключаемых параллельно контуру конденсаторов (для подстройки, для компенсации разброса параметров контура и т.п.).

Возможные схемы включения варикапа в контур (без цепей смещения по постоянному току) показаны на рис. 3.6-54. Когда необходимо обеспечить перекрытие заданного диапазона частот при минимальном возможном диапазоне управляющих напряжений, варикап в контур включают по схеме рис. 3.6-54а. Требуемый коэффициент перекрытия рабочего диапазона частот достигается соответствующим выбором емкости \(C_0\) и емкостей \(C_{min}\) и \(C_{max}\) варикапа, определяемых типом варикапа и диапазоном изменения управляющего напряжения на нем. Чем меньше значение \(C_0\), тем большее перекрытие по частоте можно обеспечить при заданном диапазоне управляющих напряжений (уменьшение \(C_0\) обычно возможно только до определенного предела, поскольку при этом для сохранения резонансной частоты контура на прежнем уровне приходится изменять намоточные данные индуктивности, входящей в контур, что увеличивает ее собственную емкость и влияет на общую добротность контура).

Рис. 3.6-54. Схемы включения варикапа в контур

В некоторых случаях при использовании для перестройки контуров варикапов важным фактором является обеспечение высокой добротности избирательных цепей. При этом для уменьшения влияния потерь в варикапе искусственно уменьшают долю емкости варикапа в полной емкости за счет введения дополнительных конденсаторов постоянной емкости (\(C1\) на рис. 3.6-54б) с малыми потерями. Однако для сохранения прежнего коэффициента перекрытия по частоте необходимо расширять пределы изменения управляющего напряжения варикапа и заходить в область более низких добротностей самого варикапа, так что выигрыш в добротности избирательной цепи возможен лишь при определенных соотношениях между емкостями варикапа и дополнительных конденсаторов. Наибольший выигрыш в добротности на нижнем конце диапазона частот получается при всяческом уменьшении величин емкостей конденсаторов контура.

При конструировании схем с варикапами следует иметь в виду, что при изменении температуры окружающей среды емкость (и добротность) варикапов меняется. Это обусловлено изменениями контактной разности потенциалов и диэлектрической проницаемости используемого полупроводникового материала. Изменение емкости происходит в направлении увеличения общей емкости с повышением температуры, т.е. температурный коэффициент емкости варикапа (\(\alpha_C\)) положителен и зависит от величины приложенного управляющего напряжения.

Изменение контактной разности потенциалов при изменении температуры почти линейно во всем рабочем диапазоне температур варикапа (уменьшается приблизительно на 2,3 мВ при повышении температуры на 1 °C). При малых значениях управляющих напряжений контактная разность потенциалов достаточно велика по сравнению с общим напряжением смещения на переходе, что приводит к значительному изменению емкости варикапа при колебаниях температуры. По мере увеличения управляющего напряжения изменения емкости становятся менее значительными. Для кремниевых варикапов в интервале управляющих напряжений 2...10 В значение \(\alpha_C\) примерно обратно пропорционально величине управляющего напряжения.

При значениях управляющих напряжений, больших чем 15...20 В, величина \(\alpha_C\) почти не зависит от приложенного напряжения и определяется температурной зависимостью диэлектрической проницаемости материала перехода, которая остается постоянной во всем диапазоне изменения управляющего напряжения.

Поскольку изменение емкости варикапа под влиянием температуры окружающей среды возникает за счет двух несвязанных между собой факторов, лучшая температурная компенсация достигается, если обеспечить отдельную компенсацию обоих эффектов.

В зависимости от выбранного диапазона управляющих напряжений и от требований к точности компенсации \(\alpha_C\) в схему могут вводиться различные элементы, компенсирующие влияние температуры либо на изменение контактной разности потенциалов, либо на изменение диэлектрической проницаемости полупроводникового материала перехода, либо одновременно на то и другое. Простые методы температурной компенсации, когда в контур включаются конденсаторы с отрицательным температурным коэффициентом емкости, могут использоваться лишь в схемах с малыми пределами изменения управляющих напряжений (не более 1,5...2 раза).

Для компенсации изменения контактной разности потенциалов достаточно добавить дополнительный источник управляющего напряжения (корректирующее напряжение), включив его последовательно с основным источником. Такое корректирующее напряжение должно иметь противоположную полярность и не зависеть от величины основного управляющего напряжения, но зависеть от температуры также, как и величина контактной разности потенциалов варикапа. Требуемую характеристику можно получить от прямосмещенного кремниевого диода. На рис. 3.6‑55 показана схема, обеспечивающая компенсацию температурных изменений контактной разности потенциалов варикапа с помощью кремниевого диода, на который подано напряжение прямого смещения.

Рис. 3.6-55. Схема компенсации температурного изменения контактной разности потенциалов варикапа с помощью прямосмещенного диода

Ток смещения диода \(VD2\) в схеме рис. 3.6‑55 должен быть выбран достаточно высоким с тем, чтобы не сказывалось влияние обратного тока варикапа (значения порядка 50...100 мА можно считать вполне достаточными для большинства случаев применения данной схемы, они обеспечивают приемлемую компенсацию вплоть до 150 °C). Компенсирующий диод должен иметь ту же самую температуру, что и варикап, а управляющее напряжение должно быть больше, чем напряжение, которое падает на диоде \(VD2\).

Для компенсации изменения диэлектрической проницаемости материала перехода от температуры в цепь питания варикапа вводят термосопротивление с отрицательным температурным коэффициентом. Такая схема компенсации показана на рис. 3.6-56. изменение сопротивления термистора должно быть таким, чтобы обеспечить необходимое изменение напряжения на регулировочном потенциометре. При необходимости введения более точной температурной компенсации используют оба рассмотренных метода.

Рис. 3.6-56. Схема компенсации температурного изменения диэлектрической проницаемости полупроводникового материала перехода варикапа с помощью терморезистора

Дополнительным источником температурной нестабильности является обратный ток варикапа, который у кремниевых диодов при нормальной комнатной температуре бывает порядка 0,01 мкА. С повышением температуры он значительно возрастает. Для подачи управляющего напряжения на варикап могут использоваться последовательная (рис. 3.6-57а) и параллельная (рис. 3.6-57б) схемы . Наличие влияния обратного тока возможно только в схеме на рис. 3.6-57б.

Рис. 3.6-57. Последовательная (а) и параллельная (б) схемы подачи управляющего напряжения на варикап

Температурное изменение обратного тока варикапа может привести к изменению падения напряжения на любом сопротивлении, включенном последовательно между варикапом и источником питания, что в результате приведет к изменению напряжения смещения на диоде, изменению его емкости и расстройке контура. Таким образом, наличие обратного тока варикапа ограничивает максимально допустимое сопротивление в цепи подачи управляющего напряжения в схеме параллельного питания. Поэтому для питания варикапов следует применять источники управляющего напряжения с возможно меньшим внутренним сопротивлением (приемлемыми считаются величины порядка 1...10 кОм), а для развязки цепей питания вместо последовательных сопротивлений использовать ВЧ дроссели.

Как уже отмечалось, контур, перестраиваемый варикапом, при малых величинах управляющего напряжения и больших уровнях принимаемого сигнала имеет недостатки, выражающиеся в изменении емкости диода в такт с изменением переменного напряжения и в сдвиге среднего значения емкости в связи с тем, что положительная и отрицательная полуволны вызывают различное изменение мгновенного значения емкости. Из-за изменения мгновенного значения емкости переменное напряжение ВЧ сильно искажается. Кроме того, из-за изменения среднего значения емкости ухудшается стабильность настройки контура. Нелинейные эффекты в контуре с варикапом начинаются уже с момента, когда приложенное переменное напряжение достигает примерно 1/3 величины постоянного управляющего напряжения.

Характеристика контура с варикапом может быть значительно улучшена за счет применения двух варикапов, включенных по переменному току последовательно в противофазе, а по постоянному току - параллельно (рис. 3.6-58). В этом случае на каждый варикап приходится лишь половина величины общего переменного напряжения сигнала, т.е. в два раза улучшается соотношение величин постоянного и переменного напряжений на варикапе, а благодаря противофазному включению незначительные и противоположно направленные изменения мгновенной емкости взаимно компенсируют друг друга (т.е. мгновенное значение общей емкости контура остается практически постоянным).

Рис. 3.6-58. Встречное включение варикапов, компенсирующее нелинейные искажения ВЧ-сигнала в контуре

Очевидно, что используемые в схеме на рис. 3.6‑58 варикапы должны иметь максимально схожие вольт-фарадные характеристики. Для применения в таких случаях выпускаются варикапы специально подобранные в пары (тройки, четверки и т.д.), а также варикапные матрицы, в которых в одном корпусе собрано несколько варикапов с одинаковыми характеристиками. Кроме встречного включения в одном контуре такие приборы применяются там, где необходимо обеспечить идентичное управление несколькими сопряженными контурами.

Кроме рассмотренных выше способов использования варикапов для перестройки резонансных контуров, эти диоды могут также использоваться и для других регулировок, осуществляемых изменением емкости. Примером может служить применение варикапов для регулирования полосы пропускания тракта промежуточной частоты. Такое регулирование может осуществляться либо за счет механического изменения связи между контурами, либо за счет переключения емкостей связи. Для регулирования ширины полосы с помощью варикапов их можно включить в качестве емкости связи между двумя контурами полосового фильтра (рис. 3.6‑59).

Рис. 3.6-59. Использование варикапа для регулировки полосы пропускания полосового фильтра

В такой схеме при изменении управляющего напряжения на варикапе ширина полосы пропускания фильтра может изменяться в 2...3 раза. Однако наряду с изменением ширины полосы пропускания при изменении управляющего напряжения будет происходить и некоторое смещение средней частоты. Этот недостаток можно уменьшить за счет применения большего числа варикапов. На рис. 3.6-60 приведена схема с двумя варикапами. Здесь варикап \(VD2\) обеспечивает изменение ширины полосы за счет изменения связи между контурами, а получающееся при этом нежелательное смещение средней частоты в сторону меньших частот компенсируется перестройкой первого контура варикапом \(VD1\). Расширение полосы в такой схеме больше, чем в схеме с одним диодом при одинаковых управляющих напряжениях, а смещение средней частоты настройки значительно меньше.

Рис. 3.6-60. Регулировка полосы пропускания полосового фильтра с помощью двух варикапов

Для еще более точной компенсации ухода средней частоты, можно использовать три варикапа, т.е. аналогично \(VD1\) в первом контуре включить варикап во второй контур.

К сожалению, при прохождении ВЧ сигнала через последовательно включенный варикап его форма значительно искажается. Поэтому в высококачественных системах обычно используют более сложные схемы перестраиваемых фильтров, где несколько включенных встречно и противофазно варикапов осуществляют сопряженное управление несколькими контурами.

Преобразователь напряжения с индуктивным накопителем энергии , позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 4.13.

Рис. 4.13. Схема преобразователя напряжения со стабилизацией

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В-КТ342А, КТ3102; ВС307В- КТ3107И; BF459-КТ940А.

Два варианта - понижающего и инвертирующего преобразователей напряжения показаны на рис. 4.14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА, второй - позволяет получить напряжение отрицательной полярности (-19,4 В) при таком же токе нагрузки. Выходной транзистор VT3 должен быть установлен на радиатор.

Аналоги транзисторов: 2N2222-KT3117A; 2N4903-KT814.

Преобразователь напряжения (рис. 4.12) позволяет получить на выходе стабилизированное напряжение 30 В . Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Рис. 4.12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц. К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления. Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту по току нагрузки, показан на рис. 4.15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА. При изменении сопротивления нагрузки

Рис. 4.14. Схемы стабилизированных преобразователей напряжения

Рис. 4.15. Схема понижающего преобразователя напряжения

на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.

Аналоги транзисторов: 2N1613 - КТ630Г, 2N2905 - КТ3107Е, КТ814.