Плазменная закалка режущего инструмента у10. Поверхностное упрочнение деталей из стали и чугуна плазменной закалкой

Урал-Техно-Плазма

ПОВЕРХНОСТНОЕ УПРОЧНЕНИЕ

ДЕТАЛЕЙ ИЗ СТАЛИ И ЧУГУНА

ПЛАЗМЕННОЙ ЗАКАЛКОЙ

Коммерческое предложение

Нижний Тагил 2012

Введение…………………………………….……………………….…………3

1. Цель плазменной закалки………..…………………………………………4

2. Упрочняемые материалы.....……………………………………….....…….4

3. Физическая сущность процесса……………………………..……………..4

4. Упрочняемые детали……………….……………………….………………5

5. Технологический процесс………………………………………………….10

6. Состав оборудования...…………………………………………………......11

7. Эффективность……………………………………………………..……….15

Заключение …………………………………………...……………………….16

Контактная информация………………………………………………...……18

Приложения…………………………………………………..…………......…19

Введение


Перспективным направлением решения этой проблемы представляется упрочняющая термическая обработка рабочей поверхности концентрированным потоком энергии. Образующиеся при скоростных нагреве и охлаждении структуры закалочного типа обладают высокими твердостью, износостойкостью, сопротивлением разрушению. Причем, упрочнение целесообразно осуществлять как для новых деталей, так и для реставрированных, например, наплавкой и (или) механической обработкой рабочей поверхности, используя дешевые высокопроизводительные методы с низкой трудоемкостью, пригодные для применения в условиях действующего производства.

Широкое промышленное применение большинства известных способов упрочняющей обработки концентрированным потоком энергии (лазерной, электроннолучевой, катодно-ионной и др.) сдерживается высокой стоимостью и сложностью оборудования, недостаточными его надежностью и производительностью, необходимостью использования вакуума , специальных помещений с особыми требованиями, потребностью в квалифицированном обслуживании, высокими эксплуатационными расходами и др.

В этих условиях, для продления эксплуатационного ресурса быстроизнашивающихся деталей рациональным по параметрам универсальности, доступности, экологичности и экономической эффективности представляется способ поверхностной термообработки плазменной дугой прямого действия. Не изменяя параметров шероховатости поверхности, такая термообработка легко встраивается в технологический процесс подготовки и ремонта деталей, являясь финишной операцией, малозатратна, достаточно производительна и позволяет эффективно увеличить их эксплуатационную стойкость.

Необходимо отметить, что применение поверхностной термической обработки не только не исключает, а в целом ряде случаев увеличивает эффективность наплавки, поскольку позволяет использовать относительно дешевые материалы с меньшей твердостью наплавленного металла. При этом наплавкой восстанавливают первоначальные размеры рабочей поверхности, без затруднений проводят механическую обработку наплавленного слоя, а окончательный комплекс свойств формируют в процессе плазменной закалки. Применение комплексного технологического процесса восстановления и упрочнения деталей обеспечивает при весьма невысокой себестоимости эффективность реновации за счет ресурсо - и энергосбережения в сочетании с экологичностью.

Представленные разработки являются результатом научно-исследовательской деятельности -Техно-Плазма совместно с Лабораторией плазменных процессов Нижнетагильского технологического института (филиала) Федерального государственного автономного образовательного учреждения высшего профессионального образования «Уральский федеральный университет имени первого Президента России ».

1.Цель плазменной закалки

Целью плазменной закалки является повышение эксплуатационного ресурса деталей машин за счет упрочнения их поверхностного слоя (толщиной до нескольких миллиметров) термической обработкой плазменной дугой при неизменном общем химическом составе материала и сохранении во внутренних слоях первоначальных свойств исходного металла.

2. Упрочняемые материалы

Железоуглеродистые сплавы (0,2…3,7 мас. % С), испытывающие полиморфные превращения при нагреве – охлаждении.


3. Физическая сущность процесса

Упрочнение является результатом высокоскоростного локального нагрева плазменной дугой поверхностного слоя изделия до высоких (выше АС3) температур и быстрое его охлаждение со сверхкритической скоростью в результате теплоотвода в глубинные (внутренние) слои материала изделия. Образующиеся при скоростном нагреве и охлаждении структуры закалочного типа обладают высокими твердостью, износостойкостью и сопротивлением разрушению. Эффект от плазменной закалки определяется повышением эксплуатационных свойств детали благодаря изменению физико-механических характеристик поверхностного слоя, вследствие образования специфической структуры и фазового состава металла, а также получения на поверхности сжимающих остаточных напряжений.

Структурные превращения в целом соответствуют происходящим при объемной закалке, однако, высокие скорости нагрева и охлаждения вызывают изменение соотношений между структурными составляющими, изменение их морфологии вследствие повышенной дефектности кристаллического строения (увеличение плотности дислокаций, измельчение блоков и рост напряжений в кристаллической решетке).

Таблица 1. Твердость поверхности сталей после плазменной закалки, HRC

Конструкционные углеродистые и низколегированные

34ХН1М, 38ХС, 40Х, 40ХН, 45

Пружинные 50ХФА, 65Г, 60С2

Инструментальные углеродистые У7, У8, У9, У10

Валковые 60ХН, 9Х, 9Х2МФ

Штамповые 5ХНМ, 5ХНВ, 4Х5ФМС

Таблица 2. Сравнение твердости сталей после плазменной закалки и

после других способов термообработки

Твердость, HRC

Объемная закалка

Закалка ТВЧ

Плазменная закалка

В результате плазменной закалки железоуглеродистых сплавов в зоне термического влияния глубиной 0,5…2,5 мм образуется модифицированная мартенситно-аустенитная структура с переменным в зависимости от режима обработки и структурного класса сплава составом. Содержание фазонаклепанного остаточного аустенита в поверхностном слое составляет от 5 до 80 % в зависимости от состава сплава и режима обработки. В условиях динамического контактного трения при эксплуатации возможно дополнительное деформационное упрочнение термообработанной поверхности за счет превращения остаточного аустенита в мартенсит деформации и наклепа металлических фаз. Средняя твердость поверхности при этом возрастает и, соответственно, повышается износостойкость.

4. Упрочняемые детали

Условно можно разделить на три группы по назначению:

4.1. Детали рельсового транспорта (бандажи колес локомотивов, вагонов, колёса шахтных вагонеток, крановые колёса и т. п.). В качестве примера - фото 1-3.

Фото 1. Закалка кранового колеса

(сталь 45), повышение твердости поверхности от исходной HB 160 до HB 300 после закалки

Фото 2. Закалка бандажей колёс локомотивов на Качканарском ГОКе

Фото 3. Закалка ходовой части колесных пар, повышение твердости до 58 HRC

4.2. Сменный технологический инструмент и оборудование (прокатные валки, бандажи, ролики, пуансоны, матрицы, ножи, штампы, буровой инструмент и др.). Примеры представлены на фото 4-24:

Фото 4. Закаленная внутренняя

поверхность кольца пуансона

(сталь 45Х1 от 48...50 до 60...62 HRC)

Фото 5. Закаленный ролик

(сталь 34ХН1М от HB 240 до 55 HRC)

Фото 6. Закалка матрицы для холодной штамповки (сталь 40ХН от 20 до 52 НRC)

Фото 7. Закалка тройниковой матрицы для холодной штамповки от 50 до 60 НRC

Фото 8. Закаленная внутренняя

поверхность матрицы

Фото 9. Закалка трефа валка

(сталь 34ХН1М)

Фото 10. Закаленные ролики

трубопрокатного стана

Фото 11. Закаленный валок АНЛПМК

Фото 12. Закаленная с оплавлением

деталь буровой коронки

Фото 13. Закалка ролика (сталь 40Х

до 50-55 HRC с водяным охлаждением)

Фото 14. Закаленные пальцы

(сталь 45ХН2МФА до 55 HRC)

Фото 15. Закаленный вал холодной прокатки

(сталь 9ХС до 60 HRC)

Фото 16. Закалка бандажа в механическом цехе Уфалейского завода металлургического машиностроения для Коршуновского ГОКа (сталь 40Л от НВ 200 до 50 HRC)

Фото 17. Устройство закалки направляющей

(сталь 9ХФ с 30 HRC до 60 HRC)

Фото 18. Закаленные коренные шейки

коленвала

(сталь 45Г2 с 30 HRC до 50 HRC)

Фото 19. Закалка клапана

(сталь 30Х13 с 28 HRC до 50 HRC)

Фото 20. Закаленный фрагмент полукольца

(сталь 45 с 25 HRC до 55 HRC)

Фото 21. Закалка вала (сталь 40Х до 55 HRC)

Фото 22. Лопатка дробомета

(сталь 45 до 50 HRC)

Фото 23. Трефы валков пильгерстана

(сталь 45 до 57 HRC)

Фото 24. Закаленный нож

сталь 6Х3В2МФС до 62HRC

4.3. Детали общего машиностроения (шестерни, звездочки, кольца, валы, оси, втулки, шкивы, посадочные места под подшипники, чугунные станины и пр.). См. фото 25-42:

Фото 25. Закаленная внутренняя

поверхность стальной втулки

Фото 26. Закалка втулки изнутри

(сталь 20 от HB 140 до 50 HRC)

Фото 27. Закаленная изнутри

чугунная гильза дизеля «КАМАЗ»

Фото 28. Закаленные тормозные барабаны

Фото 29. Ось (сталь 45)

Фото 30. Закаленные кулачки на валах

(сталь 38Х2Н2МА от HB 240 до HB 500)

Фото 31. Косозубая шестерня

Фото 32. Закаленные зубчатые рейки

Фото 33. Закаленные вал-шестерни

(сталь 30ХГСА)

Фото 34. Закаленная звездочка (сталь 20)

Фото 35. закаленные рабочие поверхности

муфты кулачковой

(сталь 50 с 30 HRC до 60 HRC)

Фото 36. Закаленные зубья шестерни

(сталь 30хгса с 25 HRC до 60 HRC)

Фото 37. Закаленные шлицы (55 HRC)

Фото 38. Закалка рычага двигаHRC)

Фото 39. Закаленная рабочая часть рычага

двигателя (сталь 45Х до 57 HRC)

Фото 40. Погон

(сталь 20Х13 с 20 HRC до 52 HRC)

Фото 41. Закаленная тонкостенная деталь

(сталь 20 до 40 HRC)

Фото 42. Пальцы (сталь 40Х до 52 HRC)

5. Технологический процесс

Технологический процесс плазменной закалки включает механическую обработку (при необходимости) и (или) очистку поверхности, подлежащей упрочнению, и собственно термообработку, которая, как правило, является финишной операцией.

Термообработка осуществляется при помощи плазматрона собственной конструкции (фото 43), генерирующего плазменную дугу прямого действия (между катодом и упрочняемым изделием) в атмосфере аргона. Перемещение плазматрона осуществляется в автоматическом режиме с использованием станочного оборудования или вручную, при этом плазмотрон устанавливается на специальном держателе.

Фото 43. Плазматрон

Обработка может производиться с оплавлением поверхности и без оплавления. Следует отметить, что даже при режимах, при которых не наблюдается видимого оплавления поверхности упрочняемого изделия, происходит изменение ее микрорельефа: уменьшается высота микронеровностей, увеличивается радиус закругления вершин за счет их микрооплавления. Это благоприятно сказывается на изменении параметров шероховатости обрабатываемой поверхности и увеличивает её несущую способность, повышает эксплуатационные свойства упрочненных изделий.

При плазменной закалке без плавления поверхности глубину упрочненного слоя можно изменять в пределах 0,5…2,5 мм, ширину локальной зоны закалки можно регулировать в пределах 5…25 мм. Большую ширину можно получить за счет сканирования дуги, когда наряду с поступательным перемещением она совершает поперечные колебания. Сканирование дуги реализуется за счет взаимодействия ее собственного магнитного поля с внешним поперечным переменным полем, создаваемым электромагнитной системой, размещенной на плазмотроне.

Для восстановления деталей различного назначения с одновременным повышением износостойкости возможно применение комбинированной технологии в виде сочетания плазменной закалки с наплавкой. Зачастую, использование наплавки износостойкими сплавами сдерживают проблемы механической обработки наплавленного слоя с твердостью больше 45 HRC. Предлагаются следующие комбинированные способы обработки:

– изношенные детали наплавляются материалом с повышенной твердостью HВ 420…450 (ПП 25Х5ФМС и др.). Механическая обработка наплавленной поверхности производится с плазменным подогревом, что повышает производительность в 2…4 раза. После обточки производится плазменная закалка до твердости 48…52 HRC;

– после наплавки материалами, обеспечивающими твердость HB 290…340 (Нп 30ХГСА и др.) и обточки, деталь упрочняется плазменной закалкой до твердости 49…53 HRC.

6. Состав оборудования

6.1. Установка для закалки в автоматическом режиме (УПЗА-1)

В качестве источника питания плазмотрона применяется сварочный выпрямитель типа ВДУ . Источник комплектуется защитными блокировками, электропневмоклапаном, расходомером газа, пультом для управления возбуждением и сканированием дуги и др.

Таблица 3. Основные данные установки

Наименование параметра

Значение

Номинальная частота, Гц

Первичный ток, А, не более

Номинальный рабочий ток, А

Масса, кг, не более

Наименование

Назначение

Датчик давления воды

Датчик давления аргона

Датчик вращения детали

Предохранение плазмотронов от выхода из строя

Таблица 4. Узлы, входящие в комплект установки

Аппаратура может работать в комплекте со станком, вращателем или другим механизмом, который обеспечивает перемещение закаливаемой поверхности относительно плазмотрона с линейной скоростью 3…5 см/с.

В институте аппаратура плазменной закалки смонтирована на базе установки плазменной наплавки типа УПН 303 (фото 44). Подобные установки, которые практически не эксплуатируются в связи с высокой стоимостью наплавочных порошков, имеются на ряде предприятий. Рационально их переоборудовать в установки плазменной закалки. К примеру, такую работу планируется провести на Северском трубном заводе.

На Качканарском, Михайловским и Лебединском горно-обогатительных комбинатах и в окатыш» эта установка работает в комплекте со станком КЖ 20 (разновидность колесофрезерного станка). При закалке бандажей для Коршуновского ГОК использовался карусельный станок механического цеха Уфалейского завода металлургического машиностроения (фото 16).

Фото 44. Установка плазменной закалки

на базе УПН 303

Изготовленные в г. г. установки для закалки в автоматическом режиме поставлены на Катав-Ивановский механический завод и на Механический завод (г. Бийск).

6.2. Установка для закалки в ручном режиме

Разработана и предлагается установка плазменной закалки в ручном режиме (УПЗР-1) на базе сварочного выпрямителя ВДМ 2х313 производства «ЭТА» (Санкт-Петербург). На фото 45 показана такая установка, поставленная на Катав-Ивановский механический завод.

Фото 45. Установка УПЗР-1

Таблица 5. Основные данные установки

Наименование параметра

Значение

Номинальное напряжение питающей сети трехфазного переменного тока, В

Номинальная частота, Гц

Первичная мощность, кВА, не более

Первичный ток, А, не более

Напряжение холостого хода, В, не более

Номинальное рабочее напряжение, В

Номинальный рабочий ток, А

Пределы регулирования рабочего тока, А

Коэффициент полезного действия, % не менее

Масса, кг, не более

Производительность установки, см2 /с

Блокировки и предохранительные устройства

Наименование

Назначение

Датчик давления воды

Предохранение плазматронов от выхода из строя

Органы управления и их назначение

Расходомер – редуктор

Пульт дистанционного управления

Грубая регулировка расхода аргона

Возбуждение дуги, регулирование рабочего тока и напряжения, управление сканирующим устройством

Таблица 6. Узлы, входящие в комплект установки

Примеры применения установки показаны на фото 46-57.

Фото 46. Закалка деталей вручную

Фото 47. Закалка зубьев звездочки

(сталь 45 от HB 200 до 50 HRC)

Фото 48. Закалка храповых колец

(сталь 45х2нмф от 20 до 50 HRC)

Фото 49. Закалка вала для проката шара Д40мм для

(сталь 35ХГС от 23 до 50 HRC)

Фото 50. Закалка зубьев кремальерной

шестерни для Завода «Металлист»

(от 16 HRC до 40 HRC)

Фото 51. Закалка рычага двигателя сталь 45Х для Челябинского тракторного завода

Фото 52. Закалка звездочки

(сталь 48 с 20 HRC до 55 HRC)

Фото 53. Трефы валков пильгерстана

(сталь 45 до 57 HRC)

Фото 54. Хвостовики (сталь 34хн3м до 58 HRC)

Фото 55. Зубья втулки (сталь 40Х до 52 HRC)

Фото 56. Закалка шлицов сталь 45 до 50HRC

Фото 57. Закалка шестерни сталь 45 до 48HRC

Возможны также изготовление и поставка универсальной установки для закалки в ручном и автоматическом режимах (УПЗРА-1).

Еще раз хотелось бы отметить, что всё вышеперечисленное оборудование обладает мобильностью, малыми габаритами и может быть размещено в составе оборудования механической обработки деталей (с использованием последнего в качестве механизма перемещения этих деталей при плазменной закалке). Закалка может быть совмещена с обтачиванием детали (если это необходимо), образуя единый ремонтный цикл.

Экономическая эффективность от внедрения разработанных научно-технических и технологических решений составляет от 5 до 10 рублей на рубль затрат.

Заключение

Можно отметить следующие преимущества плазменной закалки по сравнению с другими способами термообработки:

1) при закалке концентрированными источниками энергии в силу специфичности обработки (высокие скорости нагрева и охлаждения) удается получить такую структуру и свойства поверхностного слоя, которые недостижимы при традиционных способах термической обработки;

2) упрочняется только поверхностный слой, а сердцевина остается вязкой, что обеспечивает повышенное сопротивление одновременно изнашиванию и усталости;

3) отсутствие или минимальные деформации упрочняемых деталей, что позволяет повысить точность их изготовления, снизить трудоёмкость механической обработки и затраты на изготовление;

4) высокая производительность (3-5 см2/с в зависимости от требуемой глубины и степени перекрытия закаленных участков);

5) при закалке без оплавления поверхности не требуется последующая механическая обработка, что позволяет использовать ее в качестве финишной операции технологического процесса;

6) наличие в поверхностном слое сжимающих напряжений и присутствие остаточного аустенита повышают сопротивляемость зарождению и распространению трещин;

7) возможность замены высоколегированных сталей низколегированными, упрочненными плазменной закалкой, возможно в сочетании с наплавкой;

8) высокий эффективный КПД нагрева плазменной дугой (до 85 %), для сравнения, при лазерном упрочнении – 5 %;

9) простота обслуживания, мобильность, невысокие стоимость и эксплуатационные расходы, малые габариты технологического оборудования, возможность автоматизации и роботизации технологического процесса.

10) по сравнению с лазерной и электроннолучевой закалкой плазменная имеет следующие преимущества:

– стоимость оборудования на порядок ниже;

– простота работы на установке и её обслуживания, т. е. не требуется высококвалифицированный обслуживающий персонал;

– мобильность установки, т. е. возможность перемещения и быстрого монтажа на любом станке, обеспечивающем необходимую скорость перемещения детали или плазматрона;

– не требуется, как при лазерной закалке, наносить на поверхность специальные покрытия для увеличения поглощения лазерного излучения;

Технология закалки плазменной дугой является оптимальной по параметрам универсальности, доступности, экологичности и экономической эффективности. Она позволяет увеличить срок службы деталей, минимум, в 1,5…2 раза и сократить затраты на обслуживание и ремонт оборудования на 40…50 %. Кроме того, эта технология производительней и дешевле других способов поверхностной закалки (в том числе и ТВЧ). Установка плазменной закалки малогабаритна, мобильна, проста в эксплуатации и обслуживании, обеспечивает возможность автоматизации процесса в сочетании с обычными требованиями производственной безопасности. После плазменной закалки без оплавления не требуется механической обработки, и она может являться финишной операцией.

В экономической эффективности этой технологии убедились такие предприятия, как Северский трубный завод, Лысьвенский металлургический завод, Качканарский, Михайловский и Лебединский горно-обогатительные комбинаты, Уралмашзавод, Уфалейский машиностроительные завод, Механический завод (г. Бийск), ЗАО «Горнозаводсктранспорт» и другие.

В рамках коммерческого предложения - оказание услуг по закалке требующих упрочнения деталей, поставка установок плазменной закалки, включая монтаж, пусконаладочные работы, гарантийный ремонт, сервисное обслуживание и обучение персонала. Работы могут производиться непосредственно на вашем предприятии или в г. Нижний Тагил. Возможна закалка опытных образцов. Рассмотрим предложения по созданию участка на ваших производственных площадях.

Контактная информация

г. Нижний Тагил, -40, -Техно-Плазма

Директор: - 8-

Начальник отдела сбыта: (34, 8-,

E-mail: dryzhinin. *****@***ru

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Приложение 6

Приложение 7

Расчет фактического экономического эффекта от плазменной закалки бандажей и планшайб роликоправильной машины Нижнетагильского металлургического комбината (повышение стойкости в 2,5-3 раза).

Приложение 8

Характеристика приводных вал-шестерней, представленная (увеличение срока службы в 1,6 раза).

Приложение 9

Акт производственных испытаний роликов рольгангов Череповецкого металлургического комбината. Износ закаленных плазмой роликов уменьшился в 5 раз.

Приложение 10

Акт производственных испытаний прокатных валков блюминга 1150 НТМК, сталь 50ХН. Стойкость после плазменной закалки повысилась на 45 %.

Приложение 11

Акт эксплуатационных испытаний прокатных валков из стали 60ХН удостоверяет повышение стойкости после плазменной закалки в 1,7 раза.

Приложение 12

Акт промышленных испытаний молотовых штампов на ВСМПО (увеличение эксплуатационной стойкости после плазменной закалки на 25 %).

Приложение 13

После плазменной закалки чугунных валков (СШХНМ-42) рельсобалочного цеха Нижнетагильского металлургического комбината, их износостойкость возросла на 46 %.

Приложение 14

Стойкость валков из чугуна СПХН-45 возросла на 33,7 %.

Приложение 15

Стойкость бандажей локомотивов увеличилась в 1,8 раза.

ОПЫТ ВНЕДРЕНИЯ ПЛАЗМЕННОЙ ЗАКАЛКИ

ДЛЯ ПРОДЛЕНИЯ СРОКА СЛУЖБЫ ДЕТАЛЕЙ МАШИН

В сфере поверхностного упрочнения металлических изделий плазменное воздействие концентрированными источниками энергии находит всё более широкое применение. Но зачастую подходы конструкторов к проектированию деталей с износостойкой рабочей поверхностью по закалке ограничиваются требованиями по применению ТВЧ, цементации или азотирования. Накопленный опыт внедрения плазменной закалки свидетельствует о высокой экономической эффективности её использования. Особенно когда предприятие-заказчик является конечным потребителем и комплексно осуществляет упрочнение и эксплуатацию изделий. Технологически грамотное применение плазменной закалки может существенно расширить перечень упрочняемых деталей. Так, эта технология позволяет термообрабатывать детали различных типоразмеров, как с относительно простой геометрией (прокатные валки, валы, колёса, бандажи, шкивы и т.п.) в автоматическом режиме, так и поверхности с развитым профилем (шестерни, гравюры штампов, звёздочки, шлицевые соединения и т.п.) в ручном и автоматическом режимах. Плазменная закалка без оплавления не ухудшает параметров поверхности после механической обработки, поэтому эффективно встраивается в технологический процесс изготовления или ремонта деталей в качестве финишной операции. Широкая гамма упрочняемых плазменной закалкой железоуглеродистых сплавов – от низкоуглеродистых сталей до чугунов – требует внедрения установок, обеспечивающих широкий диапазон регулирования мощности, длины и сосредоточенности плазменной дуги. Последнее поколение установок, разработанных кафедрой, полностью отвечает этим требованиям. Эти установки более мощные, и позволяют закаливать детали на глубину более 2 мм. В качестве примера на рис.1 показаны данные по глубине, твердости и структуре зоны закалки на образце из стали 30ХН2МА.

Одна из таких установок, предназначенная для закалки ручным инструментом (УПЗР1) показана на рис. 2. Номинальный рабочий ток – 220 А. Масса установки – не более 160 кг, напряжение питающей сети – 380 В, мощность – не более 20 кВА, расход плазмообразующего газа (аргона) составляет не более 10 л/мин. Производительность УПЗР1 – 180…300 см 2 обрабатываемой поверхности в минуту.

Принцип действия УПЗР заключается в создании при помощи источника питания, осциллятора и плазмотрона плазменной (сжатой) дуги прямого действия. За счет теплового воздействия дуги при перемещении держателя с плазмотроном относительно обрабатываемой поверхности получается закаленная полоса, ширина которой регулируется расстоянием от торца плазмотрона до изделия и напряжением на электромагнитной катушке сканирующего устройства. В целях расширения технологических возможностей установки предусмотрена также обработка плазменной дугой комбинированного действия. При этом в плазмотроне горят одновременно две дуги (между катодом и соплом плазмотрона и между катодом и поверхностью детали), электрическая мощность каждой из них регулируется независимо, что позволяет в широких пределах варьировать тепловложение.

Согласно результатам производственных испытаний закаленных подобной установкой трефовых шеек (сталь 45) валков пильгерстана Северского трубного завода, износостойкость после плазменной закалки возросла в три раза, срок службы закалённых деталей увеличился на 30% (Рис. 3).

С помощью этой установки для ОАО «ПРОМКО» производится закалка вставок штампов пресса PKZe-800 для производства шаров стальных мелющих (Рис. 4). В результате поверхностного упрочнения гравюр стойкость штампов увеличилась в 2,7 раза.

В три раза возрос срок службы закаленных с помощью УПЗР-1 лопаток дробомета (сталь 45) в ОАО «Металлист» (г. Качканар) с увеличением твердости от 26..30 до 50 HRC (Рис 5.).

В ОАО «Северский трубный завод» с помощью УПЗР-1 проводилось упрочнение зубчатого колеса сталь 45Л непосредственно на кране цеха переработки металлолома (рис. 6). До закалки колесо было аварийно заменено на неупрочненное. Плазменная термообработка увеличила твёрдость с HB 200 до 51 HRC.

Для ООО «Уралпромтехсервис» (г. Екатеринбург) осуществлялась плазменная закалка плоскостей направляющих (сталь ШХ15) от HB 250 до 60 HRC (рис. 7)

Такая установка успешно работает на Бийском механическом заводе. В 2012 году установку УПЗР-1 приобрел Комбинат «Североникель» Кольской горно-металлургической компании (г. Мончегорск).

В 2011 году была создана установка УПЗР-2 с использованием инверторных источников питания дуги, она позволяет упрочнять ручным инструментом более мелкие детали, например, шестерни с модулем 3. Номинальный рабочий ток – 150 А. Масса УПЗР-2 – не более 80 кг, напряжение питающей сети – 220 В, потребляемая мощность – 12 кВА. Производительность – 30…120 см 2 обрабатываемой поверхности в минуту.

Успешно обрабатывались такой установкой шлицевые соединения эджерных валов из стали 5ХНМ для ОАО «ЕВРАЗ НТМК» от 37 до 58 HRC (Рис. 8,9).

Рис. 9. (х 2)

Установкой УПЗР-2 упрочнялись захваты из чугуна СЧ30 для ООО «Югсон-сервис» (г. Тюмень) от 40 до 60 HRC (рис.10).

Установки для плазменной закалки в ручном режиме позволяют упрочнять детали шлицевых соединений, шпоночные пазы, зубья шестерен, гравюры штампов и другие изделия с рабочими поверхностями сложной формы, но результаты закалки, особенно стабильность свойств обработанной поверхности, в значительной мере определяются квалификацией и опытом оператора.

Этот недостаток позволяют преодолеть установки плазменной закалки в автоматическом режиме. Например, установка УПЗА-1 (Рис. 11) для обработки поверхности деталей, представляющих собой тела вращения, с использованием стандартного механического оборудования (станков, манипуляторов, вращателей и т.п.) для позиционирования детали и (или) плазмотрона.

В качестве генераторов дуги используются плазмотроны прямого действия, т.е. плазменная дуга горит между катодом плазмотрона и упрочняемым изделием. Номинальное напряжение питающей сети – 380 В, номинальный рабочий ток – 300 А, потребляемая мощность не более 40 кВА, масса не более 300 кг. Установка снабжена блокировками и предохранительными устройствами, исключающими дефекты закалки и выход плазмотрона из строя при неполадках с водо и газоснабжением, а также при сбоях в работе станка, перемещающего обрабатываемую деталь.

На производственной площадке ООО «ТУР-1» (г. Пермь) посредством УПЗА-1 упрочнялись ребристые ролики (сталь 50) раскатного поля стана 5000 для Магнитогорского металлургического комбината с увеличением твердости от 27 HRC до 59 HRC (Рис.12).

С помощью такой установки упрочнялись многие детали в ОАО «Северский трубный завод» (г. Полевской). В том числе шаблоны технологические, (сталь 32Г2), срок эксплуатации которых после плазменного упрочнения повысился на 40% (Рис. 13). Плазменная закалка увеличила твердость рабочей поверхности от HB 180 до 50 HRC.

Такие установки нашли своё применение при закалке дистанционных колец для ОАО «Уралмашзавод», (сталь 34ХН1М) с повышением твердости от 33..35 до 59 HRC, при упрочнении ручьев шкивов (сталь 45), для ЗАО «Уралмаш Буровое Оборудование» с увеличением твёрдости от 27 до 52 HRC, валов сталь 40Х с повышением твердости от HB 236 до 52 HRC для ОАО «СПЕЦНЕФТЕХИММАШ» (г. Краснокамск) и др.

Из наиболее примечательных вариантов технологических решений по упрочнению установкой УПЗА следует отметить закалку штоков толкателя пресс-ножниц (производства Франции) на ОАО «Трубная металлургическая компания» г. Полевской (рис. 14). Длина штока более 9 метров, диаметр – 180мм. Он был изготовлен для аварийной замены из стали 21ХМФА. Плазменной закалкой удалось увеличить твердость поверхностного слоя с HB 130 до 40 HRC без продольной деформации штока, и пресс-ножницы продолжают бесперебойную работу вот уже более двух лет.

Установки УПЗА были изготовлены и поставлены для Полтавского Горно-обогатительного комбината (г. Комсомольск, Украина), ООО НПО Техногрупп (г. Волгоград), Механический завод (г. Бийск). Такие установки эффективно работают при закалке гребней бандажей локомотивов на Лебединском и Качканарском горно-обогатительных комбинатах.

Конструкция установок для плазменной закалки основана на использовании узлов и блоков современного серийного сварочного оборудования, что обеспечивает малые габариты, мобильность, высокую эксплуатационную надежность, простоту эксплуатации и обслуживания.

В 2012 году сотрудниками лаборатории плазменных процессов Нижнетагильского технологического института была создана и успешно испытана универсальная установка плазменной закалки в ручном и автоматическом режиме УУПЗ-1 (Рис. 15). С помощью этого оборудования появилась возможность упрочнять практически любые детали как с относительно простой геометрией, так и поверхности с развитым профилем. В качестве источника плазменной дуги в УрФУ был разработан и изготовлен инверторный выпрямитель. Напряжение питающей сети – 380 В, номинальный рабочий ток — 350 А, КПД установки – 0,9; масса – не более 40 кг.

Мобильность УУПЗ-1 позволяет проводить закалку с выездом на производственную площадку заказчика. Так, например, в ООО «Уралтехпромсервис» (г. Екатеринбург) проводилась термообработка валов (сталь 40Х) с увеличением твердости от 27 до 62 HRC (рис. 16). Диаметр вала 170 мм, длина 3500 мм.

Для ОАО «СПЕЦНЕФТЕХИММАШ» (г. Краснокамск) упрочнялись шлицы и шейки валов (сталь 40Х) от 25 до 52 HRC (Рис. 17).

Все перечисленные установки удовлетворяют условиям промышленной эксплуатации и отвечают требованиям по экологии и безопасности к проведению работ по аргонодуговой сварке.

Внедрение таких установок не требует существенных капитальных затрат. Необходима организация одного или нескольких рабочих мест (в зависимости от желаемых объемов внедрения), подобных рабочим местам для аргонодуговой сварки, Рабочее место должно быть обеспечено источником и сливом водопроводной воды для охлаждения плазмотрона.

PLASMA HARDENING HIGH-CHROMIUM CAST IRON

Kirill Vaskin

PhD, assistant professor of Togliatti State University,

Russia , Togliatti

Artur Blinov

undergraduate of Togliatti State University,

Russia, Togliatti

Andrey Blinov

head of "Technological Department of die tooling " PJSC AVTOVAZ,

Russia, Togliatti

АННОТАЦИЯ

В работе было исследовано влияние плазменной закалки на физико-механические свойства чугуна ХФ. Были определены значения микротвердости и глубины упрочненного слоя. В результате проведенных исследований было получено, что использование плазменного поверхностного термоупрочнения позволило повысить микротвердость поверхностного слоя образца более чем в 2 раза.

ABSTRACT

Effect of plasma hardening physical and mechanical properties of high-chromium cast iron in article are investigated. Values of hardness and depth of the hardened layer are determined. The use of highly concentrated energy sources makes it possible to increase the hardness of the surface layer more 2 times, as a result of our research.

Ключевые слова: плазменная закалка; термоупрочнение.

Keywords: plasma hardening; thermal hardening.

Кратковременное действие температурного фактора при закалке приводит к диспергированию структуры. Это характерно при плазменной и лазерной закалке . Однако, при лазерной закалке пятно контакта лазерного луча и обрабатываемого материала меньше пятна контакта плазменной дуги с обрабатываемой поверхностью. Поэтому при больших областях закалки более производительным является метод плазменной закалки. Таким образом, при закалке штамповой оснастки предпочтительным является способ плазменного термоупрочнения.

Исследования по изучению влияния плазменной закалки проводили на чугуне ХФ, который применяют при изготовлении пуансонов и матриц формообразующих штампов холодной штамповки на ПАО «АВТОВАЗ» .

Плазменная закалка образца (рис. 1) была проведена на установке УГДЗ-200 .

Рисунок 1. Геометрические размеры образца для плазменной закалки

Из-за того что образец имел небольшие размеры, а его способность к отведению тепла не столь велика, то некоторые участки упрочняемой поверхности оплавлялись. Чтобы устранить возникшие неровности, образец шлифовали, при этом глубина резания составила порядка 0,3…0,4 мм, а шероховатость Ra0,8. После этого на электроэрозионном станке был вырезан фрагмент поверхности для того чтобы провести дальнейшие металлографические исследования.

Замеры микротвердости были проведены с помощью микротвердомера Micromet-II, структура образца изучалась на микроскопе AxioObserver.

Плазменная закалка образцов из чугуна ХФ

Внешний вид упрочненного плазменной закалкой образца из чугуна ХФ приведен на рисунке 2. На данном образце была проведена операция шлифования упрочненной цилиндрической поверхности со съемом материала толщиной 0,4 мм, затем электроэрозионным способом вырезан фрагмент поверхности для проведения металлографических исследований.

Основные параметры процесса упрочнения:

  • рабочий ток дуги 150А;
  • рабочее давление аргона 0,3 МПа;
  • ширина закаленной зоны 10-12 мм;
  • длина дуги - 20 мм;
  • скорость прохода по поверхности - 0,5 м/мин.

Рисунок 2. Образец из чугуна ХФ после проведения плазменной закалки, шлифования, вырезки фрагмента упрочненной поверхности

Микроструктура упрочненной зоны образца из чугуна ХФ приведена на рисунке 3(а). Распределение микроструктуры от поверхности внутрь материала следующее: ледебурит, мартенсит, остаточный аустенит, троостомартенсит, цементит, графит пластинчатый по всему сечению упрочненного слоя.

а б

Рисунок 3. Микроструктура упрочненного слоя образца из чугуна ХФ. (а) - структура упрочненного слоя, (б) - структура сердцевины.

Микроструктура сердцевины образца из чугуна ХФ представлена на рисунке 3б: перлит пластинчатый, цементит, графит пластинчатый.

Параметры упрочненного методом плазменной закалки слоя чугуна ХФ:

глубина упрочненного слоя – 0,8…1,0 мм;

твердость упрочненного слоя – HRC 55…58;

структура упрочненного слоя – ледебурит, мартенсит, остаточный аустенит, троостомартенсит, цементит, графит пластинчатый;

твердость сердцевины – HRC 26;

структура сердцевины – перлит пластинчатый, цементит, графит пластинчатый.

Список литературы:

  1. Васькин К.Я., Блинов А.А., Блинов А.В. Плазменная закалка стали Х12МФ. Технические науки - от теории к практике: сб. ст. по матер. LXVIII междунар. науч.-практ. конф. № 3(63). – Новосибирск: СибАК, 2017. – С. 58-62.
  2. Зубанов И.Ю., Блинов А.В. Новая технология изготовления штампов ОАО «ВАЗ». Материалы региональной научной конференции. Т. 2. 2014 - С. 122.
  3. Коротков В.А. Опыт применения установки плазменной закалки УДГЗ-200 на предприятиях уральского региона. Автоматическая сварка. 2012. №5 (709). - С. 55-58.
  4. Коротков В.А. Свойства и промышленное применение ручной плазменной закалки. Металловедение и термическая обработка металлов. 2016. №8 (734). - С. 3-9.
  5. Огин П.А., Васькин К.Я. Повышение ресурса мелкоразмерного инструмента за счет модификации изнашиваемых поверхностей при помощи оптоволоконного лазера. IV Резниковские чтения: труды междунар. науч.-техн. конф. Ч. 1. Тольятти: ТГУ, 2015. - С. 143–145.
  6. Огин П.А., Мерсон Д.Л., Кондрашина Л.А., Васькин К.Я. Влияние режимов лазерной модификации на структуру, свойства и износостойкость мелкоразмерного инструмента из быстрорежущей стали Р6М5. Вектор науки Тольяттинского государственного университета. 2015. № 4 (34). - С. 83-88.
  7. Xiang Y., Yu D., Li Q., Peng H., Cao X., Yao J. Effects of thermal plasma jet heat flux characteristics on surface hardening. Journal of Materials. 2015. P. 238-246.
Проведение упрочнения зубъев методом плазменной закалки стали установкой УДГЗ-200 ликвидировало серьезную проблему их выкрашивания во время эксплуатации. Работы проводились на ОАО Качканарский ГОК

ОАО НТМК (Евраз холдинг) заказывал плазменную закалку зубчатого колеса изготовленного из стали 35ГЛ, используемого на сталеразливочном кране грузоподъемностью 220 тонн. В результате была повышено твердость по шкале НВ с 200 до 500 едениц, и как следствие увеличился срок эксплуатации более чем в 3 раза.

3-х кратное увеличение срока службы канатного барабана напора на экскаваторе ЭКГ-10 привела плазменная поверхностная закалка зубьев и канатных ручев выполненная установкой УДГЗ-200.

На ОАО ЧМК провели плазменную закалку опорных поверхностей и несущих роликов на зубчатом венце усреднительной машины. Работы проводили без разбора агрегата прямо на шихтовом дворе заказчика. Достигли отличного результата - увеличение межремонтного срока в два раза.

Производим плазменное упрочнение металла разнообразных сложнопрофильных зубчатых деталей, как пример на фотографии, проводилась закалка внутреннего профиля.

Плазменная закалка крупного нажимного винта по технологии проводится при закреплении его на токарный станок и вращением с небольшой скоростью. Данные процесс можно автоматизировать, подобрав на оборудовании нужную скорость вращения и подачи плазменной горелки.

Закалка шевронного зуба и шлицов выполняемая на установке УДГЗ-200.

Закалка штампов

Плазменная закалка штампов дает весьма значительный экономический эффект. Наш заказчик ОАО ЧТПЗ снизил расход штампов из дорогостоящего модифицированного чугуна (использовались при формовке труб большого диаметра).

структуры резко возрасает. Так в стали20микротвердостьмар-

тенсита составляет 6000 Мпа, а в

стали 45 - 8000 Мпа. Объясняется это тем, что твердость мартенсита растет с повышением содержанияуглерода и увеличением степени тетрагональности кристаллической решетки. При

закалке с оплавлением стали 45 в

зоне оплавления образуется мел-

кодисперсный реечный мартенсит

Зона закалки без оплавления состоит из верхней областис однородной структурой и нижней области с неоднородной структурой (мертенситотростит +мартенсит + троститная сетка).+ троститная сетка). В переходной зоне образуется троститоферритная структура, переходящая на границе с исходной структурой в ферритную. Микротвердость по глубине упрочненного слоя показана на рис.2.19.

При плазменном упрочнении без оплавления поверхности среднеуглеродистых сталей область более однородного мартенсита отсутствует и троститферритная сетка вокруг мартенсита может доходить до поверхности, что приводит к сниже­нию твердости. Это связанно с частичной гомогенизацией аустенита.

Инструментальные стали /эвтектоидные, заэвтектоидные/

По химическому составу инструментальная сталь разделяется на углероди­стую, легированную и высоколеги­рованную /быстрорежущую/. В особую группу можно выделить штамповые и валковые инструментальные стали.

Плазменному поверхностному

упрочнению подвергались

инструментальные углеродистые

сталиУ7, У8, У10, У12 с оплавлением и безоплавления

Рис. 2.20. Распределение микротвердости по глубине упрочнения

поверхностности. При закалке с оплавлением поверхности в зонезакалки из жидкой фазы, кроме мелкодисперсного мартенситазафиксировано большее количество остаточного аустенита /в стали У8 достигает 35%, в стали У12 – 50%.

В тоже время микротвердость Инструментальных сталей после плазменной закалки очень высокая, рис. 2.20.

В зоне закалки из твердой фазы закаленный слой имеет ярко выраженную неоднородность. Ближе к обрабатываемой поверхности твердый раствор насыщен углеродом, что способствует образованию повышенного количества аустенита. В нижней границе слоя остаточного Рис.2.21. Распределение микротвердости по глубине упрочненного слоя стали У10 после плазменного упрочнения с различным исходным состоянием.

аустенита значительно меньше, вследствие чего достигается максимальная твердость. Кроме того, в нижней границе слоя наблюдается большее количество нерастворенных карбидов.

Большое значение для получения высокой твердости оказывает исходное со­стояние стали. Так, в стали У8, У10 (предварительно объемно закаленной) становит­ся возможным бездиффузионное обратное мартенситное превращение с наследова­нием аустенитной дефектной структуры мартенсита при полном торможении в про­цессе плазменного нагрева эффектов разупрочнения и рекристаллизации, рис. 2.21.

При упрочнении, без оплавления предварительно закаленной стали (У 10) с исходной структурой мартенсита в зоне нагрева появляется третий слой - слой отпуска (высокодисперсная структура тростита). Микротвердость слоя отпуска со структурой тростита составляет 4000-4300 Мпа. Формирование зоны отпуска на границе закаленного слоя с исходной структурой может играть роль «мягкой» прослойки, способной тормозить развитие трещин, распространяющихся от поверхности.

Легированные инструментальные стали

Плазменному упрочнению подвергались стали 9ХФ, 9ХФМ, 9ХС, 9Х5ВФ, 6ХС, 55Х7ВСМФ, 7ХНМА, 8Н1А, ИХ, 13Х, ХВГ с оплавлением и без оплавления поверхности.

При упрочнении без оплавления поверхности в зоне оплавления возникает мелкодисперсная структура высокоуглеродистого мартенсита и остаточного аустенита. Вследствие высокой скорости плавления и кристаллизации, в зоне оплавления наблюдаются нерастворенные карбиды. Высокая легированность мартенсита в зоне оплавления обеспечивает большие значения микротвердости (12000-14000 Мпа). Однако, в большинстве случаев в зоне оплавления появляются микротрещины, что приводит к сколу и выкрашиванию упрочненного слоя.

Плазменное упрочнение без оплавления поверхности легированных инструментальных сталей приводит к формированию в упрочненной зоне сильно неодно­родной структуры. Вследствие незавершенности процессов аустенизации в упроч­ненном слое образуются мартенсит + нерастворенный цементит + остаточный аустенит. (Так в стали 9ХФ и 9ХФМ количество остаточного аустенита достигает 35 %, а в стали 55Х7ВСМФ до 40 %. Количество остаточного аустенита по глубине упрочненной зоны уменьшается и уже на глубине 80-100 мкм не превышает его со­держание в данной стали при обычной объемной закалке.

Табл. 2.8.

Твердость стали после обработки холодом /жидкий азот/

Для устранения остаточного аустенита после плазменной закалки была прове­дена обработка холодом.Известно, что в легированных инструментальных сталях точка конца мартенситного превращения лежит ниже комнатной температуры. При дальнейшем охлаждении в жидком азоте этих сталей происходит мартенситное превращение, и количество остаточного аустенита заметно снижается, табл. 2.8.

Проведенные исследования показали, что обработка холодом приближает легированные инструментальные стали по твердости к твердым сплавам (НRС Э 65- 80) и находится на одном уровне

с быстрорежущими инструмен­тальными сталями(НRС э 65-69).

Однако использование этой

Рис. 2.22. Распределение микротвердости по глубине упрочненной зоны на стали после плазменного упрочнения (без оплавления)

операции в практических целях очень затруднительно и требует дальнейших исследований.

При упрочнении легированных инструментальных сталей отмечается «эффект» максимальной твердости на некоторой глубине от поверхности, рис. 2.22.Призакалкелегированных инструментальных сталей

Требуются меньшие скорости охлаждения, чем для углеродистых, т.к. аустенит в них более 13Х(1), стали 9ХС(2), стали 9ХФМ(3) устойчив против распада. Легирующие элементы способны образовывать с углеродом соеди­нения (в виде карбидов, которые удерживают углерод в труднорастворимых соеди­нениях), препятствующие насыщению аустенита. Однако влияние легирующих элементов на микротвердость упрочненного слоя уменьшается с увеличением со­держания углерода. Стали, содержание хрома в которых превышает 2-3 %, упроч­няются менее эффективно в связи с сильным влиянием легирующих примесей на процесс закалки.

Быстрорежущие инструментальные стали

Плазменному упрочнению с оплавлением и без оплавления поверхности подвергается уже готовый инструмент, прошедший окончательную термическую обработку, изготовленный из различных марок стали Р18, Р6М5, РУМ4К8.

При упрочнении с оплавлением поверхности стали Р18 в зоне оплавления происходит растворение карбидов, повышается степень легирования и устойчи­вость аустенита. Как следствие этого твердость оказывается ниже, чем твердость стали после обычной термической обработки.

Структура и фазовый состав сталей после плазменной закалки и печного отпуска

Марка стали Способ обработки Структура Фазовые составляющие
Твердый раствор Карбиды
Кол-во фаз,% Состав по массе, % Тип карбида и кол-во % Суммарный состав по массе, %
α γ C W Mo V Cr Co Fe C W Mo V Cr Co Fe
Р6М5* Р6М5** Плазменная закалка Мартенсит + остаточный аустенит + карбид 64. 1 26.8 0.4 3.35 3.1 1.1 4.2 - 87.85 МС-1,1, М 6 С-8,0 4.0 31.5 22.5 7.3 3.4 - 31.3
Плазменная закалка + отпуск при 570º С 86.2 - 0.2 2.4 1.6 0.6 4.2 - 91.0 МС-2,6, М 6 С-7, М 2 С-3,1 М 27 С-1,1 М 23 С6 , М 7 С 3 , М 3 С 6.1 26.3 30.5 9.1 6.5 - 21.5
Р9М4К8* Плазменная закалка 62.0 29.0 0.6 5.0 3.0 1.7 3.7 8.9 77.1 МС-1,8, М 6 С-7,2 интериметаллид 4.4 4.03 19.5 8.1 3.3 2.2 22.2
Р9М4К8** Плазменная закалка + отпуск при 580º С 86.2 - 0.2 3.2 1.8 1.2 2.9 9.2 81.5 МС-3,8, М 2 С-3,6 М 6 С-7,4 М 27 С 6 , М 7 С 3 , 5.8 39.4 20.6 8.0 8.0 2.4 15.8
* Мартенсит + аустенит (твердый раствор) **Отпущенный мартенсит (твердый раствор), остаточный аустенит в пределах ошибки измерения

При упрочнении без оплавления поверхности, структура закаленного слоя состоит из мелкоиголъчатого мартенсита + остаточного аустенита + карбиды. Твердость стали (9500-12300 МПа) превосходит твердость после обычной термообра­ботки, рис.2.23.

Для быстроорежущих сталей также возможно использовать обработку холо­дом после плазменного упрочнения, что повышает твердость упрочненной зоны на стали Р6М5 с 10000 до 12000 Мпа, на стали Р18 до 11500 Мпа, Р9М4К8Ф до 13800 Мпа.

Для повышения твердости закаленной быстрорежущей стали после плазмен­ного упрочнения можно использовать отпуск, что благоприятно изменяет структуру и фазовый состав стали, табл. 2.9.

Рис. 2.23. Микротвердость стали Р18(1), Р6М5 (2) и Р9М4К8Ф (3) после плазменного упрочнения без плавления

При упрочнении быстрорежущих сталей наиболее эффективно упрочнение без оплавления поверхностности. Оптимальные значения плазменного упрочнения необходимо подбирать для каждого инструмента из той же стали. Кроме того, повышение твердости предварительно закаленной стали очень сильно зависит от длительности плазменного нагрева (зависимость для быст­рорежущих сталей НV=f(t)) имеет экстремум), т.к. длительность нагрева определя­ет скорость фазовых и структурных превращений в упрочненном слое.

Штампованные инструментальные стали

Поверхностное упрочнение стали Х17Ф1 осуществлялось с оплавлением и без оплавления поверхности. Использовалась сталь, прошедшая стандартную термообработку (закалка и отпуск) и без нее, рис. 2.24. Проведенные исследования показали, что присутствие в структуре этой стали большего количества карбидов (15-25 % по массе) требует высоких температур закалки для полного растворения карбидов и получения высокой твердости. После традицион­ней закалки в структуре остается значительное количество (12 %) избыточных карбидов и большое количество остаточного аустенита

(40-45%). При упрочнении с оплавлением поверхности карбиды хрома не успевают образовываться из-за высокой скорости охлаждения, а аустенит настолько обога­щен этим элементом, что при охлаждении до комнатной температуры мартенситное превращение не происходит.

Поэтому в оплавленной зоне твердость значительно ниже, чем в закаленном слое яз твердей фазы. Структура закаленного слоя из твердой фазы включает в себя мслкоигольчатый мартенсит + остаточный аустенит (до 30-40 %) +карбиды. Микротвердость этого слоя зависит от соотношения структурных составляющих.

Снижение скорости охлаждения при упрочнении с оплавлением поверхности позволяет получать высокую твердость в оплавленной зоне (HRC э 61-62).

Стали этого класса широко используются в машиностроении для изготовления различных деталей, работающих в сложных эксплуатационных условиях. Поэтому в практике плазменного упрочнения они занимают особое место, т.к. по ним автором собран большой материал эксплуатационных испытаний. К их числу относятся сталь ЗОХ, 40Х, 50Х, 20ХГР, ЗОХГТ, 15ХФ, 40ХФА, 40ХС, ЗОГ, 50Г, 40ХФА, 38ХС, ЗОХГСА, ЗОХМ, 40ХН, 50ХН, 20ХНЗА, 38ХГН, 45ХН2МФА, 38Х2МЮА, 38ХН1М, 18Х2Н4МА.

Основными легирующими элементами конструктивных сталей являются хром, никель, кремний, марганец. Вольфрам, молибден, ванадий, титан, бор и дру­гие вводят в сталь в сочетании с хромом, никелем, марганцем для дополнительного улучшения свойств. Известно, что при введении в сталь легирующих элементов по­следние могут образовывать с железом различные фазы: твердые растворы, легиро­ванный цементит или специальные карбиды, интерметаллические соединения.

Наличие легирующих элементов и образование ими соединений с углеродом оказывает существенное влияние на высокотемпературные процессы на диаграмме Fе-Fе 3 С по сравнению с углеродистыми сталями. Одни элементы (никель, марганец, медь) понижают критическую точку Ас з и расширяют область γ- фазы. Другие (хром, вольфрам, молибден, кремний, алюминий, ванадий, бор и др.) при определенной концентрации повышают критическую точку Ас 3 . Наиболее резко превра­щения замедляются при легировании сталей (V,W,Мо) образующие устойчивые карбиды, а также при повышенном содержании хрома (более 2 %).

Легированные конструкционные стали обладают меньшей критической ско­ростью охлаждения* и как следствие этого лучше прокаливаются. Известно, что чем выше в стали легирующих элементов, тем выше ее прокаливаемость. На сталях, имеющих в своем составе марганец, хром, бор, никель, молибден после плазменно­го упрочнения глубина упрочненного слоя больше, по сравнению с углеродистыми сталями при одинаковых режимах упрочнения.

При сравнении степени упрочнения легированных и углеродистых конст­рукционных сталей, т.к. ЗОХ, 40Х, 5ОХ и стали 30, 45, 50 показывает, что даже при небольшом легировании хромом (0,8-1,1 %) происходит заметное увеличение микротвердости. Аналогичная картина и для сталей, легированных марганцем, табл. 2.10.

Микротвердость, НПО
Легированная Конструкционная
ЗОХ 8800-9000 40Х 9500-10500 50Х11000-12000 45Г 9500-10500 50Г 11200-12500 30 7900-7400 45 7800-8600 508200-9500

В высокоуглеродистых сталях добавки легирующих элементов (0,5-1,5 %) приводят к усилению неоднородности структуры упрочненного слоя вследствие уменьшения коэффициента диффузии углерода и увеличения стойкости карбидов. Благодаря высокой легированности мартенсита микротвердость упрочненного слоя достигает больших значений. Основные структуры, образующиеся в упрочненном слое легированных сталей мартенсит + карбиды + остаточный аустенит. Анализ ле­гированных сталей затрудняется многообразием влияния легирующих элементов на фазовые структурные превращения при плазменном упрочнении и ограничивается только экспериментальными данными по микротвердости упрочненного слоя, табл. 2.11.

При использовании плазменного упрочнения для повышения твердости де­талей изготовленных из этих сталей рекомендуется использовать режимы упрочне­ния, позволяющие добиться неполного растворения карбидов (достаточного для насыщения мартенсита) и меньшего содержания остаточного аустенита. Это дости­гается при максимальных скоростях обработки.

Плазменному поверхностному упрочнению подвергались стали коррозионностойкие типа 20X13, 30X13, 40X13, 95X18, 25Х13Н2, рессорно-пружинные ста­ли типа 65Г, 60С2, 50ХФА, а также стали для отливок типа 35Л, 45Л, 20ФЛ.

Табл. 2.11

Микротвердость легированных сталей после плазменного упрочнения

Сталь Микротвердость Н, Мпа Глубина упрочненного слоя, мм
Исходной структуры В закаленной зоне
30Х 40Х 50Х 40ХН 50ХН 30Г 45Г 50Г 20ХГР 30ХГТ 15ХФ 40ХФА 40ХС 30ХГСА 35ХМ 20ХН3А 38ХГН 45ХН2МФА 38Х2МЮА 38ХН1М 18Х2Н4МА 1800-2000 1900-2300 2000-2100 2200-2250 2300-2400 2100-2200 2100-2200 2200-2300 1800-1900 1800-2000 1750-1900 2000-2100 1900-2000 1800-1950 1900-2100 1800-2100 2000-2100 2100-2200 2200-2300 2200-2300 2200-2100 8800-9000 9500-10500 11000-12000* 9200-10500 10700-11500 7900-8200 9500-10500 11200-12500* 7200-8600 8100-9500 7900-8500* 10500-11200 9800-11000 7500-7900 8300-9800 9000-10000* 10500-11000* 12200-13000 12100-13000 10000-11500* 13000-13800 0,1-3 0,1-3 0,1-3 0,1-4 0,1-4 0,1-2,5 0,1-4 0,1-5 0,1-2 0,1-3 0,1-3,5 0,1-3 0,1-3,5 0,1-4 0,1-3,5 0,1-3,5 0,1-4 0,1-4 0,1-4 0,1-4,5 0,1-4,5

* - Режим обработки с оплавлением поверхности

Плазменное упрочнение коррозийных сталей проводилось без оплавления и с оплавлением поверхностности. Микротвердость упрочненного слоя на этих сталях очень высокая, по сравнению с печной термообработкой, табл. 2.12.

Структура упрочненного слоя при оплавлении поверхности состоит из мартенсита, остаточного аустенита и карбидов. Количество остаточного аустенита дос­тигает у поверхности 35-45 %.

Максимальная микротвердость приходится на слой закалки из твердой фазы, где частично сохраняются нерастворившиеся карбиды и небольшое содержание ос­таточного аустенита (по сравнению с оплавленной зоной).

Микротвердость коррозионностойких сталей после

плазменного упрочнения

При плазменном упрочнении без оплавления максимальная твердость по глубине также находится на некотором расстоянии от поверхностности. В поверхно­стном слое фиксируется небольшое количество (5-10 %) остаточного аустенита.

Обработка рессорно-пружинных сталей 65Г,80С2, 50ХФА с оплавлением и без оплавления поверхности не отличается от обработки углеродистых и легированных сталей, рис. 2.25.

Структура упрочненной зоны представляет собой высоко - дисперсный мартенсит + остаточный аустенит + карбиды.

Рис. 2.25. Распределение микротвердости по глубине

упрочненного слоя на стали 65Г при плазменном

упрочнении без оплавления (1) и с оплавлением (2).

Углеродистые литейные стали отличаются от деформируемой стали меньшей пластичностью и ударной вязкостью. По другим физико-химическим свойствам различий практически нет. Плазменное упрочнение проводилось как с оплавлением, так и без оплавления поверхностности. Микротвердость упрочненного слоя находится примерно на одинаковом уровне с деформируемыми углеродистыми сталями, табл. 2.12. При плазменном упрочнении этих сталей желательно проводить предварительную общую печную термообработку (нормализацию, закалку, высокий отпуск).

Табл.2.13

Микротвердость упрочненного слоя на углеродистых литейных сталях после плазменного упрочнения

* Режим обработки с оплавлением поверхности

Твердые сплавы

Твердые сплавы не относятся к числу железоуглероди­стых сплавов, однако они широко используются в инструментальном производстве. Сведений об упрочнении твердых сплавов при помощи плазменного нагрева в ли­тературе (см. статью Самотугина С.С. в журнале 1997 №4, с45,-51)очень мало. Имеются данные по упрочнению твердых сплавов при помощи лазера . Лазерное упрочнение твердых сплавов ВЗК (стеллит), ВК8, ВК6М, В15 повышает твердость

сплавов в зоне упрочнения на 30-50 %, глубина упрочнения составляет 100-150 мкм (разупрочненные области отсутствуют). Повышение твердости твердых сплавов по мнению связано со структурными и фазовыми превращениями: обра­зованием карбидов WC гек, WC куб, W 2 С и насыщение кобальтовой связки вольфрамом, уменьшением карбидных частиц и т.д. Увеличение содержания кобальта в сплаве повышает степень упрочнения сплавов (с оплавлением и без оплавления поверхно­сти), химический состав и исходная твердость которых представлены в табл. 2.14.

Табл. 2.14.

  • Закалка душевная. Наставление о терпении напраслин. Благословения и проч
  • Значение санкции при назначении наказания. Исходная мера наказания и способы её определения
  • Типовая задача. Дана исходная таблица. Используя ее, мы определяем коэффициенты сжимаемости (z) и объемный коэффициент газа (b)

  • Марка сплава Химический состав, % HRC
    C Si Cr Co W WC TiC TaC
    Cтеллит 1 Стеллит 2 Релит Т15К6 Т30К ВК3 ВК6 ВК8 ВК15 2,1 - - - - - - 1,8 2,5 - - - - - - - - - - - - - - 59,1 - 4,5 - - - - - - - - - - - - - - - - - - - - - - - - -