Токарная обработка материалов. Основные узлы токарно-винторезного станка и их назначение Назначение задней бабки токарного станка

Устройство токарных станков


К атегория:

Токарное дело

Устройство токарных станков

Основные сведения о кинематике токарных станков. Кинематическая связь в токарных станках осуществляется посредством передач, с помощью которых вращательное движение с одного вала (рис. 49) передается другому II или вращательное движение преобразуется в поступательное. Наиболее простая передача - ременная, которая может быть плоскоременной (рис. 49, а) или клиноременной (рис. 49, б), кроме того, передача может быть зубчатой (рис. 49, в) и цепной (рис. 49,г). В коробках скоростей в основном применяют зубчатые передачи: цилиндрические (рис. 50, а), конические (рис. 50,6), червячные (рис. 50, в), винтовые (рис. 50, г), реечные (рис. 50) и шарикороли-ковые (рис. 50, е) в направляющих узлах. Применение передач в токарном станке показано на рис. 51.

Рис. 50. Виды передач в коробках сноростей

Рис. 51. Передачи, используемые в тонарном станне

Рис. 52. Различные виды передач

Рис. 53. Кинематичесная пара

Кинематическая пара - соединение двух соприкасающихся звеньев, допускающее их относительное движение, например передача движения с вала / на вал II (рис. 53, а) или преобразование одного движения А в другое Б (рис. 53, б).

Рис. 54. Изменение направления вращения в узлах токарного станна

Рис. 55. Кинематичесная цепь

Рис. 56. Кинематичесная цепь с четным (а) и нечетным (б) числом зацеплений

Рис. 57. Кинематичесная цепь норобки сноростей тонарно-винторезного станка

Рис. 58. Основные узлы тонарно-винторезного станка

Рис. 59. Передняя бабна

Рис. 60. Шпиндельный узел с опорами

Пример кинематической цепи указан на рис. 55. Знак передаточного отношения кинематической цепи положителен, если направление вращения конечного и начального звеньев цепи одинаковое, и отрицателен, если направления их вращения различны.

Положительный знак передаточного отношения кинематической цепи обеспечивается, если кинематическая цепь состоит из четного числа зацеплений (рис. 56, а), и отрицательный, если число зацеплении нечетное (рис. 56,6).

Кинематической цепью станка называют совокупность соединенных между собой кинематических пар, передающих движение от источника движения до конечного звена - рабочего органа станка шпинделя (рис. 57).

Основные узлы станка. Основными узлами токарно-винторезного станка являются: станина (рис. 58), передняя бабка (коробка скоростей), задняя бабка, коробка подач, фартук и суппорт.

Рис. 61. Способы крепления тонарного патрона в шпинделе

Рис. 62. Задняя бабка

Рис. 63. Суппорт

Рис. 64. Фартун и его узлы

Рис. 66. Поперечные (а) и верхние (б) салазни

Рис. 67. Лимбы

Рис. 68. Резцедержатели

Передняя бабка (рис. 59) состоит из шпиндельного узла с опорами (рис. 60) и служит для передачи вращения заготовки, закрепленной в патроне посредством конусного (рис. 61, а) или резьбового (рис. 61, б) соединения на фланце патрона.

Задняя бабка служит для центрирования второго конца заготовки или инструмента и состоит из основания (рис. 62), корпуса, пиноли, маховичка, рукоятки крепления задней бабки к станине и рукоятки зажима пиноли. В переднем конце пиноли имеется конусное гнездо, в которое вставляется центр или режущий инструмент (сверло, зенкер, развертка и др.).

Суппорт предназначен для крепления и перемещения резца в процессе резания (рис. 63). Резец закрепляют в резцедержателе, установленном на верхних салазках. Суппорт может перемещаться вручную посредством шестерни (рис. 64) и рейки, а также механически посредством ходового вала. Механическое перемещение суппорта при нарезании резьб осуществляется с помощью ходового винта и разъемной (маточной) гайки (рис. 65).

Поперечные салазки служат для перемещения резца к заготовке (рис. 66, а). На них устанавливают верхние салазки (рис. 66, б). Подача резца как в поперечном, так и в продольном направлении производится маховиками с лимбами для установки на требуемый размер обработки (рис. 67).

Рис. 69. Коробка подач

Рис. 70. Передача движения от шпинделя н ходовому

Рис. 71. Привод токарного станка винту (а) при правом (б) и левом (в) вращении ходового винта

Рис. 72. Органы управления тонарно-винторезного станна 16К20

Резцедержатели предназначены для крепления резцов на станке. В одноместном резцедержателе (рис. 68, а) резец закрепляют одним винтом. Более надежное крепление резца обеспечивает резцедержатель (рис. 68, б), в котором резец закрепляют двумя винтами. На универсальных станках применяют четырехместные резцедержатели (рис. 68, в), позволяющие одновременно устанавливать четыре резца.

Коробка подач, обеспечивая движение ходового вала или винта (рис. 69), позволяет изменять их частоту вращения (рис. 70) переключением блоков зубчатых колес с помощью рычагов и рукояток.

Привод токарного станка состоит из электродвигателя (рис. 71) и механизма передачи движения. Расположение и назначение органов управления токарно-винторезного станка 16К20 показаны на рис. 72: 1 - рукоятка управления фрикционной муфтой главного привода; 2 - вариатор подачи шага резьбы и отключение механизма подачи; 3-вариатор подачи и типа нарезаемой резьбы; 4 - вариатор подачи шага резьбы; 5 - переключатель на левую или правую резьбу; 6 - рукоятка установки нормального или увеличенного шага резьбы и положения при делении резьбы на заходы (мно-гозаходной); 7 и 8 - рукоятки установки частоты вращения шпинделя;

Рис. 73. Трехкулачновый самоцентрирующий патрон с обратными (а) и прямыми (б) нулачками

Рис. 74. Спиральный трехкулачновый самоцентрирующий патрон: 1-ведущая шестерня; 2-диск; 3-кулачки токарного зажимного патрона; 4-зубчатый обод

Рис. 75. Патроны с эксцентриковым (а), винтовым (б) и реечным (в) приводом

Приспособления и вспомогательный инструмент токарных станков предназначены для установки и крепления заготовок и инструмента. Наиболее широко применяют токарные патроны, центры, оправки, люнеты, планшайбы, переходные втулки и хомутики.

Токарные патроны предназначены для крепления в них заготовок или инструмента. Самоцентрирующие трехкулачковые патроны (рис. 73) предназначены для установки и крепления симметричных заготовок. Они наиболее удобны в работе, не требуют много времени на установку и крепление заготовки. Для перемещения кулачков в патроне служат диски со спиральной канавкой (рис. 74). Патрон с эксцентриковым зажимом кулачков показан на рис. 75,а. Для перемещения служат также винтовой (рис. 75, б) и реечный (рис. 75, в) приводы. В последнем при вращении винта рейка перемещает колесо, посредством которого перемещаются другие рейки с кулачками. На рис. 76 показан двухкулачковый патрон с винтовым приводом (рис. 76, а) и самозажимной патрон с рифельными кулачками (рис. 76, б), а на рис. 77 - пневматический патрон.

Рис. 76. Двухкулачковый патрон с винтовым приводом (а) и самозажимной патрон с рифельными нулачками (б): 1-корпус; 2-рифельные кулачки; 3-упор; 4-крышка

Рис. 77. Пневматический патрон: 1-шток; 2-штанга; 3,4-ползун с конической втулкой; 5-двухплечий рычаг; 6,7-вспомогательные и основные зажимные кулачки

Рис. 78. Четырехнулачновый несамоцентрирующий патрон (а) и планшайба (б): 1 - Т-образные направляющие пазы; 2 - сквозные пазы

Рис. 79. Цанговый патрон: а - для обработки с малой точностью; б - для обработки с повышенной точностью

Рис. 80. Роликовый самозажимной патрон

Для крепления несимметричных заготовок применяют четырехкулач-ковые несамоцентрирующие патроны (рис. 78, а). В этом патроне зажимные кулачки перемещаются независимо друг от друга. Для крепления несимметричных заготовок используют также планшайбы (рис. 78,6).

Рис. 81. Поводковый патрон с отогнутым хомутиком (а) и с предохранительным кожухом (б)

Рис. 82. Сверлильный самоцентрирующий патрон

Рис. 83. Токарные центры: L-длина центра; I -длина посадочного места

Для крепления заготовок небольших диаметров применяют цанговые и роликовые самозажимные патроны. Цанговый патрон (рис. 79) состоит из цанги и корпуса. Каждая цанга имеет определенный диаметр отверстия. При переходе на обработку заготовки другого диаметра цангу меняют. В роликовом самозажимном патроне (рис. 80) заготовки крепят тремя роликами, которые, перекатываясь по поверхностям А, В, С, заклиниваются между этими поверхностями и заготовкой.

При обработке заготовок в центрах применяют поводковые патроны (рис. 81). Для крепления сверл и другого концевого инструмента применяют сверлильные самоцентрирующие патроны (рис. 82).

Центры. Токарные центры (рис. 83) исспользуют для крепления заготовок на станке. Центр имеет рабочую часть (рис. 84), на которой крепят заготовку, и хвостовик 2 в виде конуса, которым центр вставляют в пиноль. Цилиндрическую часть хвостовика устанавливают в гнездо пиноли. Прямые конуса (рис. 84, а) применяют для установки заготовок обычными (внутренними) центрами. Для заготовок с наружными центрами применяют обратные центры (рис. 84, б), которые используют для тонких заготовок. При обработке торца заготовки при работе в центрах применяют полуцентры (рис. 84, в). При обработке конических поверхностей с большим уклоном целесообразно применять центры со сферической поверхностью (рис. 84, г). Заготовки, имеющие большие центровые отверстия или детали типа втулок, закрепляют с помощью рифельных центров (рис. 84,d). При таком способе крепления можно обтачивать заготовку по всей длине за одну установку. При обработке точных заготовок на больших скоростях применяют прямые центры с острием, оснащенным твердым сплавом (рис. 84, е). При черновых работах, при работе в центрах применяют вращающиеся центры (рис. 84, ж). Вращающийся центр устанавливают в пиноли задней бабки. При обработке заготовок больших диаметров, когда необходимо обильное смазывание трущихся поверхностей центров, применяют центры с принудительным поступлением смазочного материала (рис. 84, з). В массовом производстве при обработке однотипных заготовок на полуавтоматах применяют плавающие центры (рис. 84, и). Их устанавливают в пиноли передней бабки.

Рис. 84. Типытонарных центров

Оправки. Для крепления при обработке деталей типа втулок и получения соосности между внутренней и наружной поверхностями применяют различные виды оправок. При выполнении легких работ, когда срезают небольшие слои металла, применяют конические оправки (рис. 85, а). Поверхность оправки выполнена с небольшой конусностью, что позволяет закрепить заготовку на оправке. Такая оправка может быть применена только для одного базового отверстия. При тяжелых условиях работы применяют оправку, показанную на рис. 85, б. Заготовку устанавливают на цилиндрическую поверхность оправки и зажимают гайкой через быстросменную шайбу. Недостатком таких оправок является пониженная точность обработки, так как между цилиндрически соприкасающимися поверхностями заготовки и оправки имеются зазоры. Для устранения этого недостатка применяют оправки, показанные на рис. 85, в, г, д. На коническую поверхность оправки устанавливают прижимную цангу с цилиндрической наружной поверхностью, что позволяет обрабатывать заготовки с точностью 6-7-го квалитетов. Применяют также оправку с упругим посадочным корпусом (рис. 85, е).

Рис. 85. Оправки

Рис. 86. Схема быстродействующих зажимных оправок

Рис. 87. Люнеты

Рис. 88. Переходные конуса и втулки

Рис. 89. Специальные втулки-оправни

Широко применяют быстродействующие зажимные оправки с роликовыми (рис. 86, а, б, в) и кулачковыми (рис. 86, г) зажимами. Заготовка в таких оправках зажимается за счет перемещения роликов или кулачков относительно зажимного профиля.

Люнеты. Длинные и тонкие заготовки, длина которых в 10-15 раз больше диаметра, при обработке прогибаются. В результате получается деталь неправильной формы. Во избежание прогиба заготовки применяют неподвижные (рис. 87, а, б, г) и подвижные (рис. 87, в) люнеты. Неподвижные люнеты закрепляют на направляющих станины токарного станка. Заготовку обрабатывают с двух сторон с переустановом. Подвижные люнеты закрепляют на каретке суппорта и перемещают вместе с кареткой. В отличие от неподвижного люнета, имеющего три опоры (кулачка), у подвижного люнета только два кулачка, на которые опирается заготовка во время обработки.

Переходные втулки. Для крепления на станке инструмента применяют переходные втулки и конусы (рис. 88). Переходные втулки применяют для крепления сверл и другого конического инструмента в пиноли задней бабки тогда, когда размеры конуса инструмента не соответствуют размеру внутреннего конуса пиноли задней бабки. Иногда применяют специальные втулки-оправки, которые закрепляют в резцедержателе (рис. 89).

Рис. 90. Хомутини

Рис. 91. Поводковая оправка

Рис. 92. Физико-механические свойства материалов, применяемых при изготовлении режущего инструмента

Хомутики (рис. 90) предназначены для передачи вращения заготовке при ее обработке в центрах. Самыми распространенными являются хомутики, показанные на рис. 90, а, б. Хомутики надевают на заготовку и закрепляют. Вращение передается через поводок хомутика. При обработке однотипных заготовок применяют самозахватывающие хомутики (рис. 90, в, г). В этом случае захват заготовки производится без участия рабочего. Часто применяют безопасный хомутик с поводком (рис. 90, д). На рис. 91 показана поводковая оправка, которую применяют также как хомутики для передачи вращения заготовке.


Металлорежущим станком называют технологическую машину, на которой путем снятия стружки с заготовки получают деталь с заданными размерами, формой, расположением и шероховатостью отверстий.

Токарные станки - самый распространенный тип металлообрабатывающего оборудования. Токарное оборудование, предназначенное для обработки металла, бывает разных типов: напольное, настольное - в зависимости от целей использования. Кроме того различают станки с ЧПУ и без него.

Любой металлообрабатывающий токарный станок (включая современные центры по обработке металлов) работает в соответствии с принципом: заготовка, предназначенная для обработки, жестко закрепляется в патроне, закрепленном на шпинделе, вращающимся посредством приводного механизма с заданной частотой.

В зависимости от массы различают станки легкие (до 1 т), средние (до 10 т) и тяжелые (свыше 10т).
Резание металла (снятие металлической стружки с заготовки) осуществляется при помощи высокопрочного резца со сменными пластинками (или с напайкой и заточкой под определенным углом). Закрепленный в резцедержателе резец обрабатывает поверхность заготовки, перемещаясь вдоль и поперек оси вращения этой заготовки. Устройство токарных станков должно обеспечить не только соответствующую мощность механизма привода и механизма продольной подачи, но и статичность резца и заготовки.

Двумя главными параметрами любых токарных станков по металлу являются наибольший диаметр обрабатываемой детали над станиной и наибольшее расстояние между центрами (крайними точками, через которые проходит ось вращения детали). Эти два параметра задают максимальные габариты деталей, с которыми способен работать токарный станок.
Для изготовления на станках требуемой детали рабочим органам станка необходимо сообщить определенный, иногда достаточно сложный комплекс согласованных движений, при которых с заготовки снимается в виде стружки избыточный материал (припуск).
В процессе развития промышленности технологии и методы металлообработки, в том числе токарной, постоянно совершенствуются. На сегодняшний день наиболее актуальными и перспективным является выпуск токарных станков и обрабатывающих центров с числовым-программным управлением (ЧПУ). Данные станки предназначены для обработки деталей по всему спектру операций от черновых до чистовых при обработке наружных и внутренних цилиндрических поверхностей, сверления, зенкерования, развертывания осевых отверстий, точения конусов, нарезки наружной и внутренней резьбы.

Токарные станки с ЧПУ

Отечественные токарные станки с ЧПУ специально разработаны для высокопроизводительной обработки широкой номенклатуры материалов (Токарные станки с ЧПУ). Станки одинаково эффективны при выполнении как черновой, так и чистовой обработки с точностью до 7 квалитета. На станках с ЧПУ рабочие органы перемещаются по программе, и влияние человека сводится к отладке этой программы и привязке режущего инструмента.
На этих токарных станках выполняют широкий спектр технологических задач:
обточку и расточку цилиндрических, конических и фасонных поверхностей;
нарезание метрической, дюймовой, торцевой и конусной резьбы;
подрезку и обработку торцов;
вытачивание канавок;
сверление, зенкерование и развёртывание отверстий.
Высокая точность обработки обеспечивается:
точностью позиционирования поперечного и продольного суппорта с дискретностью 1 мкм;
стабильностью положения режущего инструмента в револьверной головке при автоматической смене;
высокой жесткостью суппортов;
высокой жесткостью шпинделя, выполненного на прецизионных опорах качения, позволяющих совмещать предварительные и финишные операции. Класс точности станков - Н (В и П - специсполнение).
Высокая производительность станка может достигаться за счет:
использования гидравлического патрона и податчика прутка,
возможности предварительной и финишной обработки большого количества поверхностей за один установ с использованием всех позиций револьверной головки (до 12-ти позиций),
компенсации износа инструмента посредством электронной коррекции (например при применении системы HPMA от Renishaw).
Также современные токарные станки с ЧПУ предусматривают возможность многостаночного обслуживания (1 оператор на несколько станков).
Данные станки подразделяют на:
Вертикальные - применяются для обработки заготовок с большой массой и габаритами. Они в свою очередь бывают
Одностоечные.
Двухстоечные.
Горизонтальные.

Строение токарного станка с ЧПУ. Прямая станина

Станина - несущий элемент станка, предназначенный для установки всех элементов оборудования и обеспечения жесткости системы. Чаще всего представляет собой стабилизированную и шлифованную чугунную отливку с оребрением. Относительно нее ориентируются и перемещаются подвижные детали и узлы.
Прямая станина - самый распространенный на данный момент тип токарного станка (например, ). В современных станках для обеспечения высокой жесткости конструкции ширина станины и направляющих увеличены.
Направляющие являются опорными поверхностями, обеспечивающими требуемое взаимное расположение и возможность относительного перемещения узлов, несущих инструмент и заготовку. Направляющие изготавливаются преимущественно из серого чугуна как одно целое со станиной. Накладные направляющие практически не применяются. Обрабатываемая заготовка получает вращение от шпинделя станка, а режущий инструмент закрепляется в резцедержке на суппорте и осуществляет формообразующие движения по двум координатным направлениям X и Z. Ось Z совпадает с направлением оси шпинделя, а ось X перпендикулярна ей. По оси Z чаще всего применяют V-образные, по оси Х - ласточкин хвост.
Направляющие на станках с наклонной станиной - прямоугольные скольжения или роликовые качения.
Шпиндельная бабка
Обеспечивает передачу момента от электродвигателя к шпинделю. Чаще всего в корпусе шпиндельной бабки размещена зубчатая коробка скоростей. Она может иметь несколько диапазонов скоростей для обеспечения оптимальных режимов обработки различных материалов. Изменение скорости вращения шпинделя может быть ступенчатым или бесступенчатым внутри диапазона:
Ступенчатое вращение осуществляется через зубчатую коробку скоростей от асинхронного мотора (чаще двухскоростного)+ручное переключение диапазонов+муфты. Реализует ограниченное количество скоростей вращения шпинделя. Обычно 12 неизменяемых позиций.
Бесступенчатое вращение (в том числе внутри диапазона) осуществляется асинхронным двигателем и частотным преобразователем или сервоприводом шпинделя; дискретность изменения - 1 об/мин ( , ). Бесступенчатые приводы обеспечивают возможность плавной настройки режимов обработки без останова станка с высокой точностью. Применение бесступенчатого привода позволяет повысить производительность путем выбора наиболее целесообразного режима обработки и сохранить постоянную скорость резания при поперечном точении (при увеличении или уменьшении диаметра обрабатываемой заготовки). Управление гидроприводом или с механическими вариаторами практически не применяется. Возможность переключения 2-3 диапазонов позволяет получать различные диапазоны скорости вращения и вращающего момента.
Широкий диапазон регулирования частоты вращения шпинделя обеспечивается за счет применения в качестве главного привода - электродвигателя переменного тока с частотным преобразователем.
Переключение диапазонов скоростей может быть ручным или автоматическим. Способ переключения диапазонов (передач) в основном определяется назначением станка, частотой переключений и длительностью рабочих перемещений. Для станков с бесступенчатым регулированием величина скорости внутри диапазона является вторичным условием выбора станка, т.к. переключения достаточно редки.

Шпиндель - обычно полый цилиндр - обеспечивает возможность фиксации по средствам оснастки и обработки прутковых заготовок.
Для обеспечения необходимой точности обработки в течение заданного срока службы шпиндели должны обладать жесткостью, стабильностью положения оси при вращении, износостойкостью опорных, посадочных и базирующих поверхностей, виброустойчивостью. Для соответствия указанным требованиям шпиндели, как правило, изготавливаются из стали и подвергаются термической обработке (цементации, азотированию, объемной и поверхностной закалке, отпуску).
На шпинделе или на промежуточном валу, вращающемся с той же скоростью, устанавливается датчик скорости вращения шпинделя. Это позволяет получать данные о реальной скорости вращения шпинделя, осуществлять синхронизацию осей для нарезания резьбы.
Примечание:
Для станков с высокой и повышенной степени точности рекомендовано применять шестеренчатую зубчатую коробку с раздельным приводом. Коробка скоростей соединяется со шпинделем ременной передачей и лишена недостатков встроенной зубчатой коробки. Нагрев во время работы, вибрации от зацепления зубьев оказывают меньшее воздействие на шпиндель. Этих недостатков также лишены станки с наклонной станиной.
Резцедержка
Может иметь 4, 6, 8 или 12 позиций в зависимости от максимального диаметра обработки. Большее количество инструментов необходимо при изготовлении сложных деталей, точении труднообрабатываемых материалов, когда инструменты имеют малый период стойкости или при частой переналадке для обработки разнотипных деталей и т. п.
Электрооборудование
В процессе эволюции электрооборудование станка занимает все меньшую площадь и обеспечивает большие возможности автоматизации. Плавное изменение оборотов вращения шпинделя, поддержание постоянства скорости резания, увеличение количества одновременно интерполируемых осей и точности позиционирования, возможность подключения дополнительного оборудования.
Электромагнитные или механические муфты в коробках станков применяются все реже.
В станках с ЧПУ при любом конструктивном решении привода подач для перемещения рабочего органа по каждой из координат предусмотрен самостоятельный привод. В основном применяются сервоприводы с точным датчиком обратной связи по положению. Шаговые привода используются на хоббийных станках. Электро-гидравлические приводы, приводы с электромагнитными муфтами, гидрокопиры и приводы постоянного тока в новых станках практически не применяются.
Система СОЖ и смазки
Система смазывания предназначена для подачи, дозирования и распределения смазочного материала, а также контроля и управления смазыванием. От эффективности действия системы смазывания зависят такие важнейшие показатели качества работы станков, как точность, долговечность, экономичность, бесшумность.
Система смазки шпиндельной бабки, централизованная смазка направляющих и ШВП, система подачи СОЖ в зону резания увеличивают срок эксплуатации станка и помогают обеспечить режимы резания, обеспечить отвод тепла и чистоту поверхности.
Смазка подшипников и шестерен шпиндельной бабки на современных станках осуществляется принудительным поливом.
Оснастка
Для закрепления заготовок на токарном станке применяют: патроны, планшайбы, цанги, центры, хомутики, люнеты, оправки. Оснастка на станках с ЧПУ может применяться и с универсальных станков, но за счет более высокой точности и больших скоростей вращения рекомендуется подбирать специализированные оправки. Более подробно об этом можно прочитать здесь: Оправки для токарных станков, Токарные патроны для станков. Для контроля точности обработки деталей токарь может использовать штангенциркули, микрометры, калибры, шаблоны, угломеры и другие измерительные инструменты, но системы контроля процессов обработки, такие как HPPA от Renishaw, позволят максимально автоматизировать производственный процесс и существенно снизить трудозатраты.
Оси подач
Сервоприводы по заданию ЧПУ осуществляют перемещение осей и контроль позиции. Сервомотор, вращаясь через муфту, передает вращение на ШВП. ШВП перемещает механические узлы выбранной координаты.
Винтовые пары качения имеют низкие потери на трение, достаточно высокую жесткость и технологическую надежность. Устранение зазоров в резьбовом шариковом соединении между рабочими поверхностями резьбы винта и гайки и шариками и создание предварительного натяга производится за счет взаимного сближения полугаек, их осевого перемещения или взаимного поворота. Высокая работоспособность и точность передачи винт-гайка качения обеспечивается высокой твердостью рабочих поверхностей.
Защита зоны резания
Кабинетная защита и раздвижные двери уменьшают разлет стружки и СОЖ при интенсивных режимах обработки, а также защищает оператора от возможного вылета детали.

Резцы
Различают следующие типы токарных резцов:
проходные - для обтачивания наружных цилиндрических и конических поверхностей;
расточные (проходные и упорные) - для растачивания глухих и сквозных отверстий (с расточными станками в продаже от компании СтанкоМашКомплекс можно ознакомится по ссылке);
отрезные/канавочные - для отрезания заготовок и обработки канавок;
резьбовые - для нарезания наружных и внутренних резьб;
фасонные - для обработки фасонных поверхностей;
прорезные - для протачивания кольцевых канавок;
галтельные - для обтачивания переходных поверхностей между ступенями валов по радиусу.
Виды токарных резцов по характеру обработки:
черновые,
получистовые,
чистовые.
По направлению обработки:
левые,
правые.
По конструкции:
цельные,
с приваренной пластиной,
со сменными пластинами.

Люнеты
Люнеты бывают подвижные, неподвижные, открытые и служат для поддержки длинных деталей в процессе обработки.

Строение токарного станка с ЧПУ. Наклонная станина

Станки с наклонной станиной () предназначены для обработки деталей по всему спектру операций и представляют собой жесткую конструкцию для высокоскоростной и высокоточной токарной обработки широкой номенклатуры деталей.

Отличия от прямой станины
высокие обороты шпинделя (до 5000 об/мин), возможность «жесткого точения»;
большая степень автоматизации (гидравдический патрон, пиноль задней бабки, податчик прутка);
большое количество позиций резцедержки (8, 10, 12);
закрытые направляющие зоны резания, высокая скорость подачи по осям;
отвод стружки под действием силы тяжести, подачи СОЖ, подачи СОЖ под давлением, имеется стружкосборник.
Задняя бабка
Имеет отдельные направляющие для перемещения вдоль оси шпинделя.
Защита направляющих
Предохраняет рабочие поверхности от попадания на них пыли, стружки, грязи и уменьшает смывание масляной пленки. Обычно представляет собой телескопическую конструкцию, рассчитанную в сложенном и полностью раскрытом состоянии на максимальные перемещения по осям. Шпиндельная бабка
Не имеет зубчатой коробки скоростей, шпиндель вращается бесступенчато на всем диапазоне работы станка. Вращение может обеспечиваться через поликлиновой ремень от серводвигателя шпинделя или напрямую от моторшпинделя. Для обеспечения повышения момента используют ведущий и ведомый шкивы разного диаметра. Опционально применяют отдельную двухдиапазонную Z коробку с редукцией 1:1 и 1:4 (1:6), устанавливаемую на вал двигателя шпинделя.

Токарные обрабатывающие центры

Обрабатывающий центр () совмещает функции токарного и фрезерного станков и предназначены для комплексной обработки деталей типа тел вращения с высокой долей автоматизации. Высокая точность обработки обеспечивается конструкцией станка (высокоточные подшипники, линейные направляющие качения, активные измерительные системы контроля инструмента, жесткость и виброустойчивость базовых корпусных деталей и др.). Подобные станки предназначены прежде всего для производства сложных деталей, требующих как операции точения, так и фрезерования.
Особенности :
позиционирование шпинделя на заданный угол,
одновременная интерполяция 3х и более осей,
приводной инструмент,
противошпиндель,
ось Y,
дополнительная резцедержка и прочие средства автоматизации.
Задняя бабка может перемещаться вручную, зацеплением за суппорт Z или иметь отдельный привод. Пиноль может заменяться на противошпинделе.

Точность станков и качество обработки

Качество обработки на станке непосредственно связано с его точностью, которая характеризует степень влияния различных погрешностей станка (геометрических, кинематических, упругих, температурных и динамических) на точность изготовляемых деталей.
Геометрические погрешности зависят от точности изготовления деталей, сборки и установки станка, а также износа узлов в процессе эксплуатации. Они влияют на точность взаимного расположения режущего инструмента и заготовки в процессе формообразования.
Кинематические погрешности определяются ошибками в передаточных числах различных передач кинематической цепи, возникающими вследствие погрешностей отдельных элементов станка (зубчатых колес, червяков, винтовых пар и др.).
Упругие погрешности связаны с деформациями станка, которые вызывают изменение взаимного расположения инструмента и заготовки под действием сил резания и характеризуются жесткостью станка (станины), т.е. его способностью сопротивляться образованию деформации.
Температурные погрешности возникают главным образом вследствие неравномерного нагрева/охлаждения различных элементов станка в процессе его работы (что приводит к изменению начальной геометрической точности) и оказывают существенное влияние на качество обработки деталей, особенно высокоточных.
Динамические погрешности связаны с относительными колебаниями инструмента и заготовки. Они ухудшают качество обработки, могут снижать стойкость режущего инструмента и долговечность станка.
Кроме указанных погрешностей станка на качество обработки значительное влияние оказывают погрешности режущего инструмента, возникающие при его изготовлении и установке на станке, а также износ режущей части в процессе эксплуатации.

По статистике около 60% всех изделий из металла проходит обработку на токарных станках. Даже простой аппарат способен выполнять массу операций по обработке внутренних и наружных элементов металлической заготовки, превращая их в готовую к использованию деталь.

Устройство токарного станка

Первые токарные аппараты появились в конце XVIII века. Эти устройства позволяли достаточно быстро и качественно обрабатывать металл. В 1794 году появился первый аппарат, схема устройства которого сохранилась в неизменном виде до сегодня.


Перед рассмотрением конструктивных особенностей токарных станков необходимо отметить, что технология их функционирования постоянно меняется, поэтому токарно-революционный аппарат с ЧПУ всего 20 лет назад считался эталоном станка по обработке металлов. Тем не менее, устройство токарного станка по металлу остается неизменным.

Основные элементы токарного станка по металлу:


Устройство универсального токарно винторезного станка

Конструктивные особенности токарно-винторезных станков

Станки этого класса используются для обработки деталей в форме диска, втулок и валов. Эти устройства производят внутреннее точение цилиндрических, торцевых, фасонных поверхностей. Кроме этого, они способны производить отрезку, сверление и зенкерование металлических деталей. Классический набор функций токарно-винторезных станков дополняется нарезанием всех видов внутренней и наружной резьбы, а также раскаткой поверхности металла. Сфера применения станков: частные мастерские и мелкосерийное производство.


  • Основание – это монолитная часть устройства, изготовленная из высокопрочных материалов: чугуна, нержавеющей или легированной стали. Основание станка выполняет две важных роли: обеспечивает фиксацию коробки передач и обрабатываемой детали;
  • Станина является главным элементом, на котором располагаются основные узлы станка. Верхняя часть станины содержит направляющие механизмы, по которым перемещаются режущие элементы – суппорт и задняя бабка станка;
  • Передняя бабка. Винторезные аппараты отличаются устройством передней бабки от классических моделей тем, что в этой части располагается шпиндель – деталь, передающая заготовке вращающийся момент. Кроме этого, на передней бабке присутствуют дополнительные удерживающие элементы: фланец, коническая шейка и отверстие. Названные детали отвечают за фиксацию и центрирование обрабатываемой детали;
  • Гитара отвечает за настройку цепи передач. Настраивается она посредством смены зубчатых колес. Современные винторезные станки позволяют устанавливать метрический и модульный шаг резьбы. Гибкие настройки гитары позволяют перевести аппарат в ручное управление, что позволяет выполнять нестандартные виды резьбы; Схема и описание токарно-винторезного станка
  • Фартук отвечает за преобразование вращения винта в поступательное движение суппорта. В зависимости от типа конструкции, винторезные аппараты меняют перемещение ходового винта посредством гаек или зубчато-реечных передач. Суппорт – это режущая часть станка. Этот элемент состоит из каретки продольного перемещения, поперечных салазок и держателей;
  • Резцовая каретка применяется для отделки конических поверхностей;
  • Задняя бабка отвечает за удержание конца обрабатываемой детали. Задняя бабка состоит из неподвижных и вращающихся элементов, а также осевых элементов, с помощью которых производится обработка центральных частей заготовки. Винторезные станки так устроены, что задняя бабка перемещается только в ручном режиме;
  • Коробка передач отвечает за изменение скорости перемещения суппорта;
  • Поперечные салазки перемещаются вручную. Современные винторезные станки оснащены совершенными поперечными салазками, с помощью которых они могут поворачиваться на 40 градусов, что позволяет обрабатывать конические поверхности с высокой точностью.

Устройство торцовочного станка

Торцовочный аппарат – простой инструмент с большим потенциалом, без которого в определенных ситуациях не обойтись. Универсальный распилочный инструмент позволяет очень быстро и эффективно производить ровные и точные срезы. У современных моделей даже есть функция среза под углом.


Торцовочный аппарат состоит из монолитного основания, фрезеровальной плоскости, на которой устанавливается поворотная рама, режущего элемента (круга) и поворотного механизма, обеспечивающего подвижность станка в вертикальной плоскости. Пильный диск, двигатель и редуктор крепятся к верхней части устройства.

Мы описали «классическую» сборку торцовочного станка. Современные модели могут иметь некоторые нюансы, например, оснащаться защитным кожухом. Кожаная накладка на торцовочном станке предотвращает попадание металлической стружки внутрь устройства, а также на пильный диск.

Функциональный ряд

Перейдем к рассмотрению функций и видов. Торцовочный аппарат может быть профессиональным или любительским. Заметим, что набор функций профессиональных и любительских моделей отличается незначительно. Разница между моделями состоит в качестве материалов, из которых изготовлено устройство и уровень прочности отдельных элементов. В нашем случае это двигатель, пильный диск и редуктор.


Центральной проблемой торцовочных станков является двигатель. Производители часто экономят на качественных материалах и устанавливают мощные двигатели без дополнительной системы охлаждения. Интенсивная эксплуатация станка проводит к быстрой поломке двигателя. Описанная проблема встречается преимущественно в любительских моделях.

Профессиональный инструмент отличается не только качеством обработки металлического изделия, но и длительным сроком службы, поэтому его используют преимущественно в промышленности. Дорогой торцовочный аппарат способен работать больше 8 часов в день без перерывов.

Поговорим о двигателях


На торцевых устройствах устанавливаются коллекторные и асинхронные двигатели. Чем они отличаются? Коллекторный двигатель имеет высокий показатель крутящего момента, но уступает асинхронному двигателю в простоте обслуживания (замена щеток). Второй двигатель отличается долгим сроком службы и меньшим уровнем шума.

Двигатель приводит в движение режущий элемент. Крутящий момент диска обеспечивается двумя типами передачи – за счет ремней или зубьев. Каждый тип передачи имеет ряд достоинств и недостатков: например, зубчатая передача исключает возможность проскальзывания (холостого хода) во время запредельных нагрузок. Ремневой тип передачи крутящего момента меньше нагружает мотор и способствует его долголетию. Однако ремни часто рвутся в неподходящий момент, останавливая работу.


Торцовочный аппарат имеет большую ширину реза, который дополнительно ограничивается при работе под углом. Угол реза увеличивается за счет установки штанги вдоль линии реза.

Видео: Устройство токарного станка

Появление большого станочного парка, состоящего из механизмов различных типов и модификаций, позволило в той или иной степени автоматизировать процесс обработки металлоизделий. Токарные станки являются одними из самых распространенных не только на производстве.

В продаже есть и , которые не имеют таких возможностей, как их «взрослые» аналоги, но, тем не менее, успешно эксплуатируются в быту или небольших специализированных мастерских. О том, как устроены станки для производства токарных работ, и поговорим.

Согласно классификации металлорежущего оборудования, токарные станки относятся к 1-й группе. Все они отличаются спецификой выполнения технологических операций, точностью и рядом других параметров. Отсюда и некоторые различия в конструкции отдельных элементов, а также в комплектации. Поэтому далее – лишь общая информация по устройству токарных станков, предназначенных для обработки металлоизделий.

Конструкция токарного станка

Рассмотрим на примере револьверной модели как наиболее распространенной. На рисунках все хорошо видно, поэтому будет достаточно отдельных пояснений.

Шпиндельная (передняя) бабка , в зависимости от модели и производителя, бывает из чугуна или листового (но толстого) железа. На ней, кроме самого шпинделя, расположен переключатель скоростей.

Для большего понимания устройства следует разобраться, за счет чего и как это происходит. Практика эксплуатации токарных станков показывает, что это одно из наиболее слабых мест любого агрегата. По своей конструкции эта часть станка мало чем отличается от механической коробки передач автомобиля. Внутри – набор шестерен, закрепленных на осях, расположенных на различных уровнях.

Комбинация, по которой они соединяются друг с другом, определяет скорость вращения шпинделя. В станках наполовину или полностью автоматизированных, этот параметр задается переключателем. В зависимости от положения его ламелей напряжение +24 В поступает на управляющий элемент – эл/магнитную муфту, срабатывание которой и позволяет перейти с одного режима на другой.

На качество токарных работ существенно влияет люфт шпинделя. Как правило, он является следствием предельной выработки одного из подшипников – переднего или заднего. Иногда замены требуют оба.

Суппорт

На нем установлен резцедержатель. Его перемещение вправо-влево может осуществляться механически или вручную.

Составные части токарного станка

  • Каретка.
  • Салазки поперечные.
  • Держатель резца.
  • Фартук. Исполнение этой конструктивной части у разных моделей может сильно отличаться.
  • Салазки резцовые.

Задняя бабка

Она выполняет двойную функцию. Если в шпинделе закрепить металлический образец, а в задней бабке – сверло, то можно производить операцию сверления, перемещая каретку влево. Зафиксировав в данной части станка конец габаритной металлозаготовки, получится вести соответствующие токарные работы. В этом случае обрабатывающим инструментом является резец, который токарь «ведет» в нужном ему направлении.

Некоторые исполнения задних бабок имеют не обычную (традиционную), а вращающуюся сердцевину. Это позволяет повысить скорость токарных работ.

Короб с элементами автоматики (на станках с ручным приводом он отсутствует)

В нем находятся двигатель, трансформатор и ряд органов управления (кнопка «пуск/стоп», сигнальные лампы и так далее). Более современные модели, относящиеся к категории тяжелые, оснащены эл/шкафом.

Все схемы токарных станков рассчитаны на пониженные напряжения (от 12 до 36 В). Это связано с тем, что вероятный пробой изоляции цепи 220 В (а все части оборудования металлические) приведет к самым печальным последствиям.

Типы токарных станков

Классификация довольно сложная, так как она производится по нескольким параметрам (виду работ, степени автоматизации, весу и тому подобное). Поэтому лишь общий обзор наиболее известных разновидностей.

  • Полу- и автоматы.
  • Одно- или многошпиндельные.
  • Револьверные.
  • Винторезные.

Многорезцовые

Карусельные

Затыловочные

Маркировка токарных станков

Она буквенно-цифровая. Расшифровка позиций (слева направо) в обозначении изделий следующая.

  • 1-я (цифра). Для токарных станков – всегда «1».
  • 2-я (цифра или буква). Тип оборудования. К примеру, для карусельного станка это «5», лобового – «6», винторезного – «И».
  • 3-я (число). Главный параметр (в дм). За него обычно принимается высота центров.
  • 4-я (буква). Проставляется не всегда. Указывает на особенности токарного станка. К примеру, литера «Т» свидетельствует о том, что он модифицирован; «П» – повышенной точности, и так далее.

Основные характеристики

У каждого токарного станка – свои возможности. На что в первую очередь обратить внимание?

  • Максимальное сечение металлозаготовки, которую можно зажать в шпинделе.
  • Расстояние между центрами бабок при их крайнем положении. От этого зависит максимальная длина образца, который получится обработать.
  • Предельная толщина металлической детали. Определяется расстоянием от оси шпиндель – задняя бабка до суппорта.

Модификаций токарных станков довольно много, но если вникнуть в их конструкцию, то принципиальных отличий нет. Основная разница – в компоновке станков, местоположении некоторых узлов и их исполнении (форма, размеры и тому подобное). К каждому изделию производитель обязательно прилагает комплект документации, по которой, имея общее понятие об устройстве токарного станка, с нюансами разобраться труда не составит.

Как известно, работа с металлом требует определённых навыков и специального оборудования. Так, изготовление металлических изделий разной формы может производиться только на токарных станках по металлу. Однако перед эксплуатацией или починки в случае поломки, необходимо ознакомиться с устройством данного агрегата.

Предназначение и разновидности токарных станков

Основная задача любого токарного станка - изготовление металлической детали необходимой формы. В этом специалисту помогают различные рычаги и крепления, расположенные на устройстве. Благодаря им, домашний мастер может без труда провести внутреннюю или наружную резьбу, изготовить сложные изделия или просто обработать заготовку.

Существует 2 разновидности токарных станков - это бытовые (домашние) и производственные изделия. Первый вариант представляет собой уменьшенную копию своего собрата с некоторыми ограничениями в функциональности. Вторая же разновидность устройств предназначена для работы с металлом на крупных предприятиях, где ежедневно изготавливается множество изделий различной формы.

Домашние устройства прежде всего отличаются габаритами. Но несмотря на ограниченную функциональность, их рабочий потенциал расположен на высоком уровне. Конечно, из-за своих размеров они могут работать только с небольшими заготовками, но в домашних условиях этого вполне достаточно.

Устройство токарного станка

В каждом изделии для работы с металлом имеется несколько важных деталей:

  • Станина.
  • Передняя бабка.
  • Задняя бабка.
  • Шпиндель.
  • Суппорт.
  • Электросхема и электродвигатель.

Именно на них основывается работа токарного станка, поэтому данные компоненты следует рассмотреть более подробно.

Станина

Станину можно сравнить с материнской платой, что установлена в ПК. Именно на этот элемент тем или иным образом крепятся остальные детали. Поэтому станину можно смело называть базой токарного станка по металлу.

Форма данного элемента представляет собой своеобразный пролёт моста, который установлен на двух основаниях, соединяющихся между собой, и деталью с продольными стенками. Такая конструкция обеспечивает жёсткость установки и движение некоторых деталей при необходимости.

Устройство передней бабки

На левом конце станины имеется деталь, называющаяся передней бабкой. Данный элемент всегда имеет одну и ту же форму. Основная функция - придание заготовке вращение и удержание её во время работы. Соответственно, при необходимости скорость вращения должна регулироваться.

За это отвечает коробка скоростей, устанавливаемая на переднюю бабку. Благодаря рычагам, мастер может задать необходимую скорость оборотов шпиндельного узла. Узел подаёт сигнал на шпиндель, который вращается благодаря подшипникам.

Шпиндельный узел передней бабки - один из наиболее важных элементов. Низкое качество этой детали или выход из строя не дадут возможности обработать заготовку должным образом. Прямолинейность же и параллельность работы можно узнать по крайним направляющим станины.

Конструкция задней бабки

Компонент, именуемый задней бабкой, отвечает за фиксацию заготовок при их помещении в обработочный центр токарного станка. Также на неё можно закрепить различные инструменты и приспособления (свёрла, метчики, развёртки и т. д.). В отличие от передней бабки, задняя деталь может иметь несколько разновидностей. Например, на одних моделях имеется обычный, а на других - встроенный вращающийся центр .

Если на заднюю бабку установлен обычный центр, то корпус монтируется на специальную плиту, которая, в свою очередь, устанавливается на направляющие. При этом в корпусе токарного станка по работе с металлом делается отверстие, по которому движутся пиноль и гайка.

Встроенные вращающиеся центры чаще всего устанавливаются на изделия с ускоренной обработкой металла. Из-за этого меняется форма и конструкция задней бабки токарного станка. Так, основные изменения будут в пиноли, где появится отверстие с подшипниками и коническими роликами. Именно в это отверстие будет установлен центр.

Осевое усилие при обработке металла берёт на себя упорный шарикоподшипник . Однако если втулка соединяется с пинолью специальным стопорящим приспособлением, вращения не будет. Это следует учитывать при выборе токарного станка по работе с металлом.

Описание шпинделя

Шпиндель - это резьбовой вал, имеющий отверстие в виде конуса. Важность данного элемента обосновывается тем, что многие компоненты токарного станка созданы именно для работы шпинделя. Отверстие в нём сделано для крепления различных инструментов, переднего центра и оправок.

Если данный элемент выходит из строя, обработка металла становится невозможной. Поэтому качество и исправность данного изделия - важный параметр для работы на токарном станке. Проверять наличие люфтов или лёгкой слабины необходимо постоянно.

Устройство суппорта

Эта деталь обеспечивает движение резцедержателя . При этом перемещение относительно оси может быть:

  • Продольным.
  • Поперечным.
  • Наклонным.

Движение обеспечивается благодаря т. н. салазкам, которые устанавливаются на станину. Резцовые же головки фиксируются сверху суппорта.

Электросхема и электродвигатель

Работа всего устройства возложена на электрические компоненты, установленные в корпусе токарного станка. Как известно, электросхемы нужны для подключения, подачи и регулирования тока на определённые детали. В токарном же станке электрическая схема обычно работает от двигателя, имеющего короткозамкнутый ротор.

Электродвигатель приводит в движение все компоненты агрегата. Определённые разновидности могут иметь несколько скоростей и, соответственно, регулировку оборотов. Благодаря этому можно более эффективно работать с металлом.

Токарный станок - вещь недешёвая. Поэтому перед приобретением в первую очередь необходимо чётко обозначить бюджет и требуемую функциональность. Исходя из этого можно приступать к выбору модели.

Сразу стоит отметить, что не рекомендуется брать устройства для бытового пользования, которые уже были в употреблении. Однако если бюджет сильно ограничен, можно рискнуть. Главное, перед покупкой необходимо как следует протестировать устройство.

Итак, при выборе следует акцентировать внимание на следующих моментах:

  • Тип токарного станка. В большинстве случаев вполне достаточно бытового (домашнего) типа. Однако если обработка заготовок будет проводиться ежедневно и в больших объёмах, рекомендуется обратить внимание на промышленные модели.
  • Питающее напряжение. Наилучший вариант - приобретать изделия, работающие не от трёхфазной сети.
  • Мощность. Для работы в домашних условиях вполне хватит станка с мощность в 1 кВт.
  • Габариты. Громоздкое и тяжёлое оборудование наверняка придётся размещать на специальном укреплённом столе. Поэтому чем эргономичнее устройство - тем лучше. Конечно, не в ущерб функциональности.
  • Максимальный диаметр обработки. От данного параметра зависят общие возможности по обработке заготовок.
  • Дополнительные приспособления, расширяющие функциональность токарного станка.
  • Наличие автоматического движения суппорта. Мастера токарного дела очень рекомендуют приобретать модели, где имеется автоматическое перемещение этого элемента.
  • Количество рычагов и маркировка. Как правило, чем больше этих элементов - тем лучше. Однако также рекомендуется акцентировать внимание на наличие градиентной шкалы у рычагов, чтобы была возможность регулировки.

Стоит сказать, что среди подобных изделий лидирует отечественный станок «Корвет» . Данная модель достаточно давно завоевала популярность и уверенно удерживает первое место по соотношению цена - качество.