Датчики влагосодержания. Сигнализатор появления влаги


Если надолго забыть о поставленной на горячую плиту посуде с водой, выпарившиеся несколько литров воды и испорченная посуда вас не обрадуют. Чтобы такого не случалось, можно собрать несложное устройство, которое, будучи размещённым, например, на кухне, известит звуковыми сигналами о высокой влажности в помещении.

Схема сигнализатора повышенной влажности воздуха представлена на рис. 1. По совместительству он может подать сигнал и об образовавшейся на полу луже, что уменьшит неприятности в случае повреждения водопроводного либо отопительного оборудования или переполнения раковины при оставленном на длительное время открытом кране и засорившемся сливном отверстии.

Рис. 1. Схема сигнализатора повышенной влажности воздуха

В качестве чувствительного элемента в сигнализаторе применён газорезистор B1. Такие использовались в кассетных видеомагнитофонах и видеокамерах для блокировки работы лентопротяжного механизма при высокой влажности воздуха внутри корпуса аппарата. Логические элементы DD1.1 и DD1.2 образуют генератор импульсов, следующих примерно 15 раз в минуту. Эта частота задана резисторами R13, R15, R16 и конденсатором C9. Благодаря диоду VD7 импульсы значительно (приблизительно в 10 раз) короче пауз между ними.

Когда газорезистор сухой, его сопротивление не превышает 1...3 кОм и напряжения в точке соединения резисторов R4, R5, R7 недостаточно для открывания транзистора VT1. Закрыт и транзистор VT2. Логический уровень напряжения на нижнем (по схеме) входе элемента DD1.1 - низкий, чем запрещена работа генератора импульсов на элементах DD1.1 и DD1.2, причём на выходе элемента DD1.2 установлен низкий уровень, в свою очередь запрещающий работу генератора импульсов звуковой частоты на элементах DD1.3 и DD1.4.

Если влажность окружающего газорезистор воздуха повысится (для проверки достаточно сделать с расстояния 5...10 см два-три выдоха на газорезистор), то сопротивление газорезистора возрастёт до 10...20 МОм. Увеличившимся напряжением на базе транзистор VT1 будет открыт, вместе с ним откроется и транзистор VT2. На нижнем (по схеме) входе элемента DD1.1 будет установлен высокий логический уровень напряжения. Оба генератора импульсов заработают. Пьезоизлучатель звука HA1 станет каждые 4 с подавать звуковые сигналы длительностью около 0,5 с.

Обратная связь через резистор R7 ускоряет открывание и закрывание транзисторов VT1, VT2 и создаёт небольшой гистерезис в характеристике их переключения. Это обеспечивает чёткое без "дребезга" срабатывание сигнализатора при медленном приближении влажности к пороговой. Порог срабатывания устанавливают подстро-ечным резистором R3.

Устройство подаст сигнал и в том случае, если транзистор VT1 останется закрытым, а транзистор VT2 откроется в результате замыкания пролитой водой контактов E1 и E2. Резисторы R6 и R8 не только ограничивают базовый ток транзистора VT2, но и уменьшают опасность поражения электрическим током человека, прикоснувшегося к контактам. Сетевое напряжение может попасть на них в результате проникновения воды внутрь сигнализатора или нарушения изоляции между обмотками трансформатора T1.

Чтобы сигнализатор не досаждал звуковыми сигналами, пока устраняются причины его срабатывания, нажатием на кнопку SB1 можно заблокировать работу генераторов приблизительно на 18 мин. Столько времени конденсатор С8, разряженный нажатием на кнопку, будет заряжаться через резистор R17. Резистор R22 ограничивает разрядный ток конденсатора, предохраняя контакты кнопки от обгорания. Следует отметить, что восстановление низкого сопротивления газорезистора B1 по окончании воздействия высокой влажности происходит очень медленно. Поэтому, чтобы избавиться от назойливых сигналов, может потребоваться нажимать на кнопку SB1 несколько раз.

Пьезоизлучатель звука HA1 подключён к выходам элементов DD1.3, DD1.4 через эмиттерные повторители на транзисторах VT5, VT6 и VT7, VT8. Это увеличивает нагрузочную способность генератора и даёт возможность подключить к нему несколько излучателей звука параллельно, разместив их, например, в разных помещениях.

Светодиод HL1 сигнализирует о включении сигнализатора в сеть, а светодиод HL2 включается в моменты подачи звуковых сигналов, а также при заблокированной низким уровнем напряжения на конденсаторе C8 работе генераторов. Конденсаторы C1 и C2 предотвращают ложные срабатывания сигнализатора, вызванные помехами.

Напряжение сети 220 В поступает на первичную обмотку понижающего трансформатора T1 через защитные резисторы R1 и R2. Варистор RU1 защищает трансформатор от всплесков напряжения сети. Напряжение около 17 В с вторичной обмотки трансформатора выпрямляет диодный мост VD2-VD5. Все узлы стабилизатора питаются напряжением +9,2 В, получаемым из выпрямленного с помощью стабилизатора на транзисторах VT3 и VT4. Его значение зависит от напряжения стабилизации стабилитрона VD6.

Поскольку в качестве T1 в конструкции применён маломощный понижающий трансформатор от копировального аппарата "Xerox", рассчитанный на ток нагрузки около 10 мА, ток через стабилитрон выбран очень маленьким - менее 1 мА. Небольшая мощность трансформатора определила и выбор характера звукового сигнала - короткий тональный импульс и длинная пауза.

Можно использовать и более мощный трансформатор, например ТПК-2-12В, рассчитанный на ток нагрузки до 0,21 А. Для самостоятельного изготовления трансформатора подойдёт Ш-образный магнитопровод с площадью сечения центрального стержня 2 см 2 . Первичная обмотка должна состоять из 5900 витков обмоточного провода диаметром 0,06 мм. Вторичную обмотку, содержащую 500 витков, наматывают проводом диаметром около 0,2 мм. Пластины магнитопровода собирают вперекрышку. Готовый трансформатор можно покрыть эпоксидным компаундом.

Большинство деталей устройства размещены на монтажной плате размерами 75x45 мм, изображённой на рис. 2. На небольших отдельных платах смонтированы резисторы R6, R8 и резисторы R1, R2 c варистором RU1.

Рис. 2. Размещение деталей устройства на монтажной плате размерами 75x45 мм

Использована также готовая плата от сетевого адаптера, на которой установлены диоды VD2-VD5 и конденсатор C3. Все эти платы после изготовления покрыты со стороны монтажа влагозащитным лаком, например ХВ-784. Вместе с трансформатором T1 они размещены в пластмассовом корпусе размерами 160x110x32 мм от приёмника охранной сигнализации RR-701R.

Газорезистор B1, извлечённый из видеомагнитофона Funai, закреплён на массивной металлической пластине и вместе с ней помещён в пластмассовый корпус размерами 46x42x15 мм (рис. 3) с отверстиями для доступа воздуха. Чувствительность его значительно выше, чем у отечественного газорезистора ГЗР-2Б, применённого в конструкции, описанной в статье "Светозвуковой сигнализатор выкипания воды" ("Радио", 2004, № 12, с. 42, 43). Тем не менее ГЗР-2Б и другие аналогичные газорезисторы могут работать и в описываемом сигнализаторе.

Рис. 3. Газорезистор B1 на металлической пластине

В устройстве могут быть применены постоянные резисторы любого типа (МЛТ, С1-4, С1-14, С2-23). Желательно, чтобы резисторы R1 и R2 были невозгораемыми. Подстроечный резистор R3 - миниатюрный в корпусе, защищающем его от внешних воздействий. Крайне нежелательно использовать подстроечные резисторы открытого исполнения (например, СП3-38) из-за их низкой надёжности. Варистор RU1 - HEL14D471K или другой дисковый с классификационным напряжением 470 В.

Оксидные конденсаторы - К50-68, К53-19, К53-30 и их импортные аналоги. Конденсатор C8 должен быть с малым током утечки. Экземпляр, использованный автором, имеет ток утечки менее 10 нА при напряжении 18 В. Остальные конденсаторы - керамические К10-17, К10-50, КМ-5 или их аналоги. Конденсатор C4 должен быть рассчитан на напряжение не ниже 35 В.

Вместо диодов 1 N4002 подойдут любые из 1N4001- 1 N4007, UF4001 -UF4007, а также серий КД208, КД209, КД243. Диоды 1N4148 можно заменить на 1SS244, 1N914, КД510А, КД521А, КД521Б, КД522А, КД522Б. Стабилитрон BZV55C-10 заменяется на TZMC-10, КС210Ц, КС210Ц1, 2С210К1, 2С210К, 2С210Ц, транзисторы 2SC1685 и 2SC2058 - на 2SC1815, 2SC1845, SS9014, а также серий КТ3102, КТ6111, а транзистор 2SA1015 - на SS9012, SS9015, 2SA733 или серий КТ3107, КТ6112. Замена транзисторов 2SC2331 - 2SC2383, SS8050, BD136, BD138, КТ646А, КТ683А. Вместо транзисторов 2SA1273 и 2SA1270 пригодны SS8550, 2SB564, BD231, КТ639А, КТ644А, КТ684А. Следует иметь в виду, что предлагаемые в качестве замены транзисторы могут иметь отличия в типе корпуса и расположении выводов.

Микросхему К561ЛА7 заменят отечественные КР1561ЛА7, Н564ЛА7, 564ЛА7 (две последние в других корпусах) или импортная CD4011А.

Дроссель L1 - малогабаритный промышленного изготовления индуктивностью не менее 100 мкГн и сопротивлением обмотки 3...30 Ом. Кнопка SB1 - ПКн-125.

Излучатель звука HA1 - пьезоэлектрический вызывной прибор телефонного аппарата. Его собственная ёмкость - 0,03 мкФ. Подойдут и другие пьезоизлучатели, даже большей ёмкости, рассчитанные на напряжение не менее 20 В. Несколько таких излучателей можно соединить параллельно. Вместо пьезоизлучателя к выходу прибора можно подключить через неполярный разделительный конденсатор электромагнитный телефонный капсюль или динамическую головку с сопротивлением обмотки не менее 32 Ом, например PQAS57P3ZA-DZ.

Датчик протечки воды можно сделать, например, из пластины фольгированного с одной стороны стеклотекстолита. Фольгу разделяют по ломаной линии зазором на две изолированные части, одна из которых служит электродом E1, а вторая - электродом E2. Чем больше протяжённость зазора, тем выше вероятность того, что первые же упавшие на пластину капли воды попадут на него и замкнут электроды.

Несколько таких датчиков, соединив их параллельно, можно разместить в наиболее опасных, с точки зрения протечки воды, местах, например, под радиаторами отопления, стиральной машиной, сочленениями водопроводных труб. Коробку с газорезисто-ром помещают в наиболее подверженном запотеванию при высокой влажности месте помещения, но не на окне.

Подстроечным резистором R3 устанавливают порог срабатывания сигнализатора. Если "сухое сопротивление" газорезистора B1 восстанавливается после снижения влажности слишком долго, в сигнализатор можно установить резисторы R4 и R5 втрое меньшего сопротивления. Повысить чувствительность датчика протёкшей воды можно увеличением сопротивления резистора R9 до 100 кОм. Подбирая сопротивление резистора R20, можно установить желаемую тональность звуковых сигналов. Для удобства проверки работоспособности и налаживания сигнализатора конденсатор C8 можно временно отключить.


Дата публикации: 13.09.2015

Мнения читателей
  • Иван / 05.04.2016 - 09:28
    А есть структурная схема,описание микросхем и печатная плата?

Приборы, измеряющие влажность, называют гигрометрами. Их можно также назвать и датчики влажности. В обыденной жизни влажность – это немаловажный параметр. Она важна для сельхозугодий, техники.

От процента влажности зависит здоровье человека. Метеозависимые люди очень чувствительны к этому параметру. Также от нее зависит здоровье больных астмой, гипертонией. Когда воздух сухой здоровые люди чувствуют сонливость, раздражение кожи, зуд. Излишне сухой воздух провоцирует болезни дыхания.

На заводах и фабриках влажность оказывает влияние на сохранность сырья и выпускаемой продукции, и станков. В сельскохозяйственных угодьях влажность оказывает влияние на почву, ее плодородие. Чтобы владеть информацией о влажности применяют гигрометры (датчики влажности).

Классификация датчиков влажности

Некоторые приборы изготавливают калиброванными под определенную влажность, но для точной настройки нужно знать точное значение этого параметра в воздухе.

Влажность измеряется по параметрам:
  • Воздух и газы определяются по влажности в г*м 3 при абсолютной величине, или при относительной величине в RН.
  • Твердые предметы, жидкости, измеряют в % от веса образца .
  • Жидкостей не смешиваемых, влажность меряют частями воды (ррm) .
Емкостные датчики влажности

Эти чувствительные элементы можно представить, как элементарные конденсаторы с двумя пластинами, между которыми находится воздух. Это наиболее простая конструкция. Воздух не проводит электрический ток в сухом состоянии. При ее изменении, меняется и емкость конденсатора.

Конструкцией более сложной является емкостный датчик с диэлектриком, который значительно изменяется от влажности. Такой способ повышает качество датчика, по сравнению с воздушным типом.

Второй тип лучше применять для измерений на предметах твердых. Предмет размещается между пластинами конденсатора, который подключается к контуру колебаний, к генератору. Делается замер частоты контура колебаний, по результату рассчитывается емкость образца.

Такой способ измерения содержит негативные стороны. При влажности материала менее 0,5 процента, точность будет низкой, материал должен быть чистым от веществ с высокой проницаемостью. Важнейшим также является геометрическая форма предмета, которая не должна меняться в опыте по измерению влажности.

Третий тип датчика представляет собой тонкопленочный гигрометр, включающий подложку с двумя электродами в виде гребенки. Они являются обкладками. Для компенсации температуры в 1 датчик включены 2 термоэлемента.

Резистивные датчики влажности

Резистивные датчики состоят из 2-х электродов. Они нанесены на подложку. На электроды наложен слой токопроводящего материала. Но этот материал значительно меняет значение сопротивления в зависимости от влажности.

Подходящим по чувствительности материалом стал оксид алюминия. Он поглощает влагу извне, его сопротивление значительно меняется. В итоге полное сопротивление сети датчика имеет большую зависимость от влажности. Значение проходящего тока будет показывать о значении влажности. Преимуществом таких датчиков стала их небольшая стоимость.

Термисторный вариант датчика

Гигрометр на термисторах включает два однотипных термистора. Это нелинейные компоненты. Их сопротивление прямо пропорционально температуре. Один из термисторов расположен в герметичной камере с сухим воздухом. 2-й термистор находится в камере с отверстиями. Через них поступает влажный воздух. Эту влажность нужно определить. Термисторы подключены по мостовой схеме. Разность потенциалов подается на одну диагональ, показания снимают с другой.

При нулевом напряжении на выходе термисторов, их температура одинакова, поэтому влажность обоих термисторов также равна. При нулевом напряжении влажность разная. Поэтому, по измеренному напряжению рассчитывают влажность.

Возникает вопрос, почему при изменении влажности меняется температура термистора. Ответить можно так. При повышении влажности с поверхности термистора испаряется вода, и температура термистора снижается. Чем больше показатель влажности, тем эти процессы протекают более стремительно, термистор остывает быстрее.

Оптические датчики влажности

В его основе действия определения влажности стоит точка росы. Когда достигается это состояние точки росы, то жидкость и газ приобретают равновесие термодинамики.

Если стекло расположить в газовой среде с температурой, находящейся выше точки росы, далее снижать температуру стекла, то на стекле возникнет конденсат. Это процесс перехода воды в жидкое состояние. Температура такого перехода и называется точкой росы. Температура этой точки зависит от давления и влажности среды. В итоге, если мы сможем определить температуру и давление, то легко вычислим и влажность. Такой метод является основным.

Простая цепь датчика включает светодиод, испускающий свет на поверхность зеркала, отражающего и изменяющего его направление. В нашем случае есть возможность изменять температуру зеркала путем подогрева или охлаждения устройством регулировки температуры особой точности. Можно использовать термоэлектрический насос. На зеркало монтируют датчик температуры.

Перед началом замеров температуру зеркала устанавливают так, чтобы его значение было больше точки росы. Затем охлаждают зеркало. На зеркале будут образовываться водяные капли, вследствие этого луч света, поступающий от светодиода, будет преломляться и рассеиваться, что приведет к снижению тока в фотодетекторе.

Владея информацией от фотодетектора, регулятор будет поддерживать температуру на зеркале, а термодатчик определит температуру. Зная давление и температуру, определяют влажность.

Оптический датчик имеет максимальную точность, по сравнению с другими аналогами. Из недостатков можно выделить повышенную стоимость и немалый расход энергии, а также обслуживание, которое заключается в поддержании поверхности зеркала в чистом виде.

Электронный гигрометр

Его принцип действия заключается в изменении электролита, которым покрыт изоляционный материал. Имеются устройства с автоподогревом, поддерживающие температуру точки росы.

Замер температуры точки росы проводится над раствором хлорида лития. Этот раствор очень чувствительный к самым малым изменениям влажности. Для наибольшего удобства к гигрометру прикрепляют термометр. Такой гигрометр имеет повышенную точность, небольшую погрешность. Он может измерить влажность при любой температуре среды.

Большую известность имеют обычные электронные гигрометры с двумя электродами. В почву втыкаются два электрода. По степени проводимости тока определяют влажность. Перед приобретением датчика нужно определиться, для чего он будет применяться, диапазон замеров, точность и т. д. Наиболее точным прибором является оптический датчик. В зависимости от условий нужно обратить внимание на класс защиты, интервал температур измерения.

Датчики влажности своими руками
Многие умельцы хотят собственными руками сделать гигрометр для вентилятора. Для такой работы им понадобятся современные цифровые устройства:
  • Сенсорные датчики и температуры (DНТ 11, DНТ 22).
  • Устройство обработки данных на основе Ардуино.

– устройство, состоящее из комплекта микропроцессоров, собранных на недорогих микроконтроллерах. Оно имеет открытые понятные схемы. Любой желающий может узнать в интернете, какие составные части входят в схему, какая будет у него цена. Подключение вентилятора к такому устройству не составит труда. Интересным фактом является взаимодействие такого устройства с компьютером. Существует множество драйверов и специальных программ, с помощью которых можно работать и выполнять разные операции.

Если учесть стоимость в настоящее время, то хочется сделать своими руками вытяжной вентилятор в комплекте с датчиком влажности. Но такие устройства рекомендуется изготавливать для задач сложнее. Можно, например, соединить в одну сеть множество разного оборудования. Многие фирмы монтируют датчики влажности на выпускаемое оборудование. Вследствие этого не имеет серьезного смысла этим заниматься, и делать то, что уже давно сделано.

Если сделать увлажнитель для дома и попытаться подключить его к вентилятору, то это совсем другое дело. Для таких целей необходимо разработать несколько схем.

Можно найти и подобный датчик влажности для вентилятора. Такие имеются на оборудовании компании Honeywell. Их действие основывается на способе работы конденсатора. Могут отпугнуть такие понятия, как «особая полимерная изоляция», или «электроды платиновые». Эти устройства стоят не дешево. Сначала нужно изучить этот вопрос и определиться, нужно это или нет. Довольно сложной работой окажется и сборка схемы замера аналогового значения, и градуировка датчика.

Компания Regeltechnik производит сенсоры совмещенного типа для измерения влажности и температуры, как для внешней среды, так и для внутри зданий и помещений.

Канальные датчики влажности

Существуют гидростаты канального вида. Применение их пока остается не очень понятным. В заводских условиях это можно как-либо объяснить. На электростанции имеется контроль множества параметров. Там высокая влажность в вентиляционном канале системой автоуправления может определиться, как нарушение функций оборудования.

Для домашнего хозяйства канальный вентилятор с датчиком влажности нигде не пригодится, так как он не предназначен для контроля значений среды. Если канальный вентилятор эксплуатируется сразу на множество помещений, и образуется влага в канале, то это является командным сигналом для увеличения скорости работы электродвигателя вентилятора. Это возникает при близком к холостому ходу режиме. В этом случае датчик влажности с вентилятором станут мощной системой экономии электричества. Эксплуатация этой системы на полную мощность осуществится только при необходимости.

Можно также сделать управление действием рекуператора и аналогичного оборудования. Его смысл заключается в том, что при нормальном режиме происходит экономия электричества.

Влажность рекомендуется создавать в пределах 40-60 процентов. Иногда появляется в таких случаях задача по увлажнению. Вентилятор с устройством увлажнения может достичь номинальных параметров автоматически, так как в его составе имеется встроенный гигростат, другими словами генератор пара. Эти приборы востребованы в летний период в сухих климатических условиях. Вентиляторы могут при помощи цифровой управляемой системы бороться с капризами природы. Плохой погоды не бывает, но микроклимат всегда можно оптимизировать.

Многие современные импортные стиральные машины обору­дованы сигнализаторами подтекания воды из них. Устаревшие или более дешевые модели стиральных машин такой сервис­ной функции не имеют. К сожалению, некоторые их владель­цы уже на собственном опыте знают, что такое "потоп" и "сколько это будет стоить". Чтобы не испытать это чувство, можно заранее воспользоваться материалами статьи.

Схема простейшего сигнализа­тора повышения влажности приве­дена на рис. 1. Она контролирует состояние датчика влажности (сенсо­ра), который подключается к контак­там К1 "SENSOR". Конструкция дат­чика может быть самой различной.

Все зависит от возможностей его изготовителя. В простейшем слу­чае достаточно воспользоваться "печатной" платой, на которой име­ются два проводника, расположен­ные на удалении 0,5...1,5 мм друг от друга. Для повышения эффек­тивности работы такого датчика при минимальных его размерах можно сделать проводники в виде спирали. Это позволит увеличить "зону взаимодействия" проводни­ков без значительного увеличения габаритов датчика.

На микросхеме интегрального таймера IC1 типа NE555 выполнен моностабильный генератор им­пульсов. Собственная частота ге­нератора определяется номинала­ми резисторов R1, R2 и конденса­тора С1.

К выходу схемы (КЗ "OUT- REPRO") подключается любой электромагнитный или динамичес­кий излучатель. Для исключения перегрузки микросхемы по выходу необходимо, чтобы его сопротивле­ние при напряжении питания мик­росхемы 9 В было более 50 Ом. Можно воспользоваться и малогаба­ритным пьезоизлучателем. При этом его надо будет зашунтировать рези­стором сопротивлением 2...20 кОм. В качестве конденсатора С2 при этом достаточно будет использовать неполярный керамический конден­сатор емкостью до 0,22...0,68 мкФ или вообще заменить конденсатор С2 ... перемычкой. Смелее экспе­риментируйте!

При сухом датчике влажности транзистор Т1 будет в непроводя­щем состоянии, напряжение пита­ния на микросхему IC1 не подает­ся и она обесточена. Если влаж­ность в месте расположения датчи­ка "SENSOR" повысится, то тран­зистор Т1 получит смещение базо­вого перехода и отопрется. Микро­схема IC1 получит питание и начнет генерировать электрические сигна­лы звукового диапазона частот. "Зазвучит" излучатель, сигнализи­руя о протечке воды в месте уста­новки датчика.

Для повышения чувствительно­сти работы схемы целесообразно в качестве Т1 использовать тран­зисторы с большим коэффициен­том усиления, например, ВС549С или отечественные КТ3102Е.

Схема рис. 1 очень простая и типовая. Казалось бы, что в ней еще усовершенствовать? Действи­тельно, начинающие радиолюбите­ли могут повторять ее. Собствен­но, на них она и была рассчитана. Более любознательные читатели могут задаться вопросом рацио­нальности предлагаемого в схеме рис. 1 способа включения/вык­лючения генерации микросхемы электронного таймера серии 555. Из алгоритма работы этих микро­схем известно, что в зависимо­сти от напряжения на выводе 4 тай­мер может находиться в рабочем или пассивном (заторможенном) состоянии. Так, если на вывод 4 по­дано напряжение менее 0,4 В, то на выходе таймера (независимо от сигналов на других его входах) ус­танавливается напряжение низко­го уровня. Этот режим называется пассивным.

Если напряжение на выводе 4 превышает 1 В, то цепь блокиров­ки работы таймера автоматически выключается и не влияет на после­дующую работу таймера. Это ак­тивный режим. Микросхема может работать как моностабильный ге­нератор в данном случае. Ток уп­равления микросхемой по выводу 4 очень мал и не превышает 0,2 мА. Это позволяет изменить схему уп­равления ее работой. Дело в том, что с повышением влажности в области датчика "SENSOR" сопро­тивление самого датчика меняет­ся не скачкообразно, а постепенно. Примерно так же постепенно будет уменьшаться и сопротивление пе­рехода эмиттер-коллектор транзи­стора Т1. Возрастает напряжение питания микросхемы IC1. Пример­но при 3...4 В она начинает гене­рировать, но громкость звука в громкоговорителе "REPRO" будет очень слабой. По мере повышения влажности в зоне датчика гром­кость возрастает.

Целесообразнее постараться придать сигнализатору влажности релейные свойства - сигнал трево­ги должен быть достаточно силь­ным уже при минимально допусти­мом уровне контролируемого пара­метра (влажности). Для этого, ве­роятно, достаточно вывод 8 (+Vcc) микросхемы IC1 и резистор R1 под­ключить непосредственно к выхо­ду выключателя питания S1. Вывод 4 этой микросхемы соединяют с эмиттером транзистора Т1 и допол­нительным резистором R3. Второй конец этого резистора должен быть соединен с минусом питания мик­росхемы - рис. 2.

Как и ранее, пока датчик влажности сух, транзистор Т1 находится в непроводящем со­стоянии. Тока эмиттера транзисто­ра и падения напряжения на рези­сторе R3 нет. Таймер "заторможен" по выводу 4.

При повышении влажности транзистор Т1 отпирается, ток эмиттера(коллектора)создает па­дение напряжения на резисторе R3. Как только на этом резисторе будет более 0,4...1 В, таймер раз­блокируется и начинает генериро­вать импульсы. Релейный режим управления работой генератора НЧ при линейном изменении сопро­тивления датчика влажности дос­тигнут.

В заключение хотелось бы выс­казать предположения в выборе типа транзистора Т1 и номинала резистора R3. Поскольку ток тай­мера 555 по выводу 4 может быть очень мал (менее 0,5 мА), то зада­димся током коллектора этого транзистора, например, 2 мА. Зна­чит, при напряжении питания схе­мы 9 В сопротивление R3 может быть 4,3 кОм.

Получение столь небольшого тока через транзистор Т1, вероят­но, возможно и при не столь уж и большом коэффициенте его усиле­ния. А это допускает применение в качестве Т1 любых типов мало­мощных транзисторов без их под­бора. Возможно, целесообразно выполнить эмиттерную нагрузку транзистора Т1 в виде цепочки из двух резисторов (R3 и R4) - рис. 3. Это дополнительно облегчит на­стройку схемы.

Литература:
1. Poplachove cidlo vlhoctf // Amaterske RADIO. 2009. №12. S.3.
2. B.H. Вениаминов, O.H. Лебе­дев, А.И. Мирошниченко. Микро­схемы и их применение // М.: Изда­тельство "Радио и связь". 1989. С.81 -82.


Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://сайт/


Самые интересные ролики на Youtube


Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.


Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней... электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.


Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.


Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.


Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://сайт/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.


Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.


Внимание!

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Вода может стать источником большой беды, если вовремя не узнать о ее появлении там, где ее не ждут и где она нежеланна, особенно в больших количествах.

Помочь человеку в подобных случаях и избежать многих неприятностей может индивидуальный сигнализатор появления влаги, который можно выполнить очень компактным. Схема сигнализатора показана на рис.1.

На германиевых транзисторах VT1, VT2, резисторах R1, R2, конденсаторе С1 и головке громкоговорителя собран тональный генератор, который при исправных деталях начинает звучать сразу, как только на него будет подано напряжение питания. Питание на генератор подается через ключевой каскад на кремниевых транзисторах VT3, VT4, резисторах R3...R5 и датчике появления влаги. Многие жидкости обладают электропроводностью и, следовательно, сопротивлением электрическому току. Так, водопроводная вода имеет омическое сопротивление в несколько килом.

Следовательно, попадание влаги на датчик эквивалентно появлению между базой транзистора VT3 и "минусом" цепи питания некоторого сопротивления, которое делает электрический потенциал базы транзистора VT3 отрицательным по отношению к эмиттеру этого транзистора. Такое включение для транзистора VT3 является открывающим, и через него начинает течь ток, который в свою очередь приводит к открыванию транзистора VT4. Оба транзистора, открывшись, входят в режим насыщения, электронный ключ замыкается, и через него на тональный генератор подается питание. Начинает звучать головка громкоговорителя (0,5 ГДШ-2), тональность и громкость звука которой способны разбудить даже крепко спящего человека. В дежурном (ждущем) режиме сигнализатор потребляет ток значительно меньше 1 мкА. В режиме сигнализации (при попадании воды на датчик) прибор потребляет ток не более 80 мА. Так как прибор очень экономичен в дежурном режиме, то в наиболее ответственных случаях установка в него выключателя питания даже нежелательна.

Чтобы убедиться, что сигнализатор включен и работоспособен, достаточно замкнуть пластины его датчика влажными пальцами руки или чем-то металлическим. В случае исправности он тут же подаст "голос".

Область применения сигнализатора появления влаги не ограничена охранными функциями. Он может следить за

наполнением жидкостью каких-либо емкостей, или его можно использовать в качестве электронной "няни". В последнем случае датчик (датчики) подкладывают под пеленки. Как только пеленки намокнут "няня" тут же об этом просигнализирует. Для приведения электронной "няни" в дежурное положение достаточно протереть датчик какой-либо салфеткой или ветошью.

В качестве VT1 можно использовать МП11А (МП35 ...МП38), а в качестве VT2 -МП39 (МП16...МП42Б), т.е. любые низкочастотные маломощные германиевые транзисторы соответствующей проводимости. В качестве VT3 применен КТ203, в качестве VT4 - КТ814. Радиатор для VT4 не нужен. В качестве головки громкоговорителя подойдут любые мощностью 0,25...2 Вт с номинальным электрическим сопротивлением 8 Ом. Монтаж прибора может быть как навесным, так и с использованием печатной платы, размеры и конфигурация которой зависят от размеров примененных деталей и корпуса прибора.

В качестве датчика прибора можно использовать пластину одностороннего фольгированного материала, на которой вытравлены контактные полоски (рис. 2). Можно вырезать полоски датчика из медной фольги и наклеить их на резину, кожу и т.п. Полоски следует залудить припоем. Некоторые из авторов советуют этого не делать, так как внешний вид от этого становится кустарным. Но если залуживать хорошо прогретым, зачищенным и облуженным жалом мощного паяльника хорошо зачищенные и натертые канифолью печатные проводники, используя малые количества припоя (это своеобразное "ноу-хау"), то качество покрытия получается отличным. Вместе с этим устраняются дефекты печатных проводников из-за микротрещин, и повышается срок службы печатных плат, особенно тех, которые из-за применения нельзя покрывать защитным лаком.

Чем меньше будет расстояние между полосками датчика, тем выше вероятность того, что сигнализатор сработает даже от попадания на датчик нескольких капель дождя. Длина проводников, соединяющих датчик с прибором, может быть от нескольких десятков сантиметров до нескольких сотен метров.

С.Н. Коваленко, г. Запорожье