Прибор показывающий высоту над уровнем моря. Измерение высоты предмета

Могут пригодиться во время горных походов и спортивных восхождений. На этот раз остановимся поподробнее на расшифровке тех привычных или, напротив, необычных функций, которые могут вызвать интерес у спортсменов. Речь пойдет, разумеется, не обо всем многообразии функций, которыми владеют профессиональные часы, а лишь о тех, которые нужны непосредственно при взятии высоты (в походе или соревновании): GPS-навигация, альтиметр, барометр, компас и пульсометр. Заодно и сравним, как с этими функциями справляются самые «прокачанные» часы трех ведущих спортивных брендов : Suunto, Casio и Timex.

Глоссарий:

GPS (Global Positioning System) – спутниковая система навигации, позволяющая отследить точное местоположение в координатах, измерить расстояние от пункта А до пункта Б и проложить маршрут. Пригодится скорее альпинисту, чем скалолазу.

Альтиметр – прибор для измерения высоты над уровнем моря. Необходим при ориентировании в горах, в т.ч. в условиях плохой видимости; оповещает о перепадах высот, о достижении заданной точки и т.д.

Барометр – прибор для измерения атмосферного давления. Спрогнозирует погодные условия, и гроза не застанет Вас врасплох!

Пульсометр – устройство персонального мониторинга частоты сокращений сердца (ЧСС). Незаменимый помощник на тренировках и соревнованиях.

Первое место: Suunto Ambit GPS

Мужские часы Suunto Ambit Black GPS
РРЦ: 27990 р.

  • Полнофункциональная система GPS с поддержкой путевых точек и навигации по маршруту.
  • Функция «Путь домой».
  • Корректировка времени по спутниковому сигналу.
  • Быстрое обновление данных о темпе и скорости Вашего передвижения (FusedSpeed™). Значение скорости определяется по уникальной комбинации данных акселерометра (датчика ускорения) и GPS-навигатора. Сигнал GPS-навигатора фильтруется на основе данных об ускорении, позволяя получить более точные показания при неизменной скорости и быстрее отреагировать на ее изменение.
  • Все данные о маршрутах записываются по кругу, т.е. при заполнении памяти новые записи записываются поверх старых.
  • Серьезный и увлекательный интернет-дневник спортивных событий на Movescount.com! Здесь можно планировать маршруты и переносить их в память наручных часов (с помощью USB-кабеля); анализировать достижения, оптимизировать тренировки и обмениваться спортивной информацией с друзьями.

3D-компас

Когда Вы пользуетесь обычным компасом, для обеспечения точности показаний необходимо держать компас параллельно земле. 3D-компасы Suunto учитывают наклон, позволяя получать точные показания независимо от того, как повернута кисть вашей руки.

Альтиметр

  • Вычисление общей длины подъема/спуска и возможность точного измерения вертикальной скорости (фиксация координатных точек GPS каждые 60 секунд). В любой момент, взглянув на часы, Вы сможете узнать, как долго еще осталось идти.
  • Автоматическое переключение между высотомером и барометром. Интеллектуальная функция определяет, движетесь Вы или нет, и на основании этого выбирает режим. При восхождении прибор учитывает изменение высоты над уровнем моря. А во время остановки на привал - изменение барометрического давления.

Барометр

  • Графическое отображение текущей температуры и изменения погоды за последние 27 часов.
  • Можно создать собственный профиль, где давление будет указываться в мм рт.ст.

Пульсометр

  • Подсчет калорий и ЧСС в режиме реального времени.
  • Отображает эффективность текущей тренировки по программе Peak Training Effect (PTE) на основе Вашей физической готовности к максимальным нагрузкам. Доказано, что данный показатель способен в полной мере заменить лабораторные тесты.
  • Определяет время, необходимое для полного восстановления организма после тренировки в зависимости от ее интенсивности и отображает полученное значение на дисплее (не только в абсолютных величинах, но и в процентах и в графическом виде).
  • Возможно совместное использование пульсометра и кардиопередатчика (для получения большей информации о тренировке).
  • Все данные о тренировках записываются по кругу, т.е. при заполнении памяти новые записи записываются поверх старых.

Второе место : Timex Expedition WS4 (Wide Screen 4 Functions)

Мужские часы Timex Expedition WS4 T49664
РРЦ: 15370 р.

Альтиметр

  • Показывает измерение в футах или метрах.
  • Отслеживает текущую, наивысшую и накопленную высоту.
  • Схематично отображает подъем и спуск.
  • Функция «защёлка альтиметра» позволяет избежать ложных колебаний высоты при изменении атмосферного давления.
  • Измеряет время до достижения целевой высоты.
  • Сигнал достижения высоты.

«Когда прозвучит звуковой сигнал, Вы будете знать, что достигли установленной высоты. Это короткое напоминание позволит Вам оценить Ваше состояние и решить, насколько успешно Вы продвинулись в достижении своей цели».
Conrad Anker (Конрад Анкер, всемирно известный альпинист, который тестировал эти часы)

Барометр

  • Графически отображает изменение давления уровня моря за последние 36 часов; отслеживает высокое, низкое и текущее давление.
  • Проецирует информацию в миллибарах (МВ) или в дюймах рт.ст. (Hg)
  • Показывает температуру по Цельсию или Фаренгейту.
  • Иконки прогноза погоды. Часы могут предсказывать погоду на ближайшие 4-6 часов на основании тенденций изменения атмосферного давления в предыдущие 12 часов.

Высокое давление обычно говорит о ясной погоде, в то время как низкое давление обещает пасмурную погоду, с большой вероятностью осадков.

Третье место: Casio ProTrek PRG-240-1Е («Saltoro Kangri»)

Мужские часы Casio Protrek PRG-240-1E
РРЦ: 9990 р.

Альтиметр

  • График изменения высоты с отображением разницы измерений в реальном времени.
  • Значение общей величины подъема/спуска. Данная функция суммирует все пройденные вами этапы восхождения. Вы сразу же можете увидеть, насколько высоко поднялись.
  • Автоматическое сохранение данных в записной книжке.

Барометр

  • Измерение атмосферного давления с возможностью изменения единицы измерения.
  • Встроенный датчик температуры от -10° до +60°С с точностью 0,1°C.
  • График измерения атмосферного давления с отображением разницы измерений.
  • Калибровка датчика атмосферного давления.

СРАВНИТЕЛЬНАЯ ТАБЛИЦА

Измерение высоты мерной вилкой. Высоту дерева можно определить мерной вилкой. Для этого ее надо соответствующим образом наладить.

1. В неподвижной ножке на расстоянии 5... 8 см от ее конца просверлить небольшое отверстие.

2. На подвижной ножке точно против отверстия отметить черту и принять ее за нулевое деление. Вправо и влево от нуля нанести косые сантиметровые деления, причем влево от нуля черточки наносят с наклоном влево, а с правой стороны- вправо.

3. Снабдить мерную вилку нитью с отвесом.

Измеряют высоту следующим образом. Мерщик отмеряет от дерева расстояние, примерно равное высоте дерева, и выбирает такое место, чтобы хорошо видна была вершина и основание дерева, например на расстоянии 24 м. Подвижную ножку отодвигает на число сантиметров, равное чис„ у метров от дерева до наблюдателя (в нашем примере 24 см) и закрепляет в этом положении стопором. По внутренней грани неподвижной ножки

визирует на вершину дерева. При этом нить с отвесом займет вертикальное положение и пересечет некоторое число делений на подвижной ножке, которое соответствует высоте дерева от уровня глаза наблюдателя до вершины (2.3).

В равнинной местности, чтобы пол,чить всю высоту дерева, необходимо к полученному отсчету прибавить рост мерщика. В горной местности, если основание ствола расположено ниже наблюдателя, сначала визируют на вершину дерева и делают отсчет, затем визируют на основание. Сумма отсчетов на вершину и на основание ствола и будет высота всего ствола. Если, наоборот, основание ствола расположено выше наблюдателя, то высота ство а будет равна разности отсчетов на вершину и на основание. Погрешность измерений высоты дерева мерной вилкой составляет ±5 ... 8 %

Маятниковый высотомер . Маятниковый высотомер, предложенный таксатором Н. И Макаровым, представляет собой плоскую стальную пластину размером 8X10 см в виде сектора. С лицевой стороны сектора закреплен маятник и нанесены две шкалы высот: верхняя для измерения высоты при базисе 10 м и нижняя для измерения высоты при базисе 20 м. На шкалах деления нанесены по обе стороны от нулевого деления. К секторной пластине высотомера припаяна визирная трубка, глазной

диоптр, который расширен в виде воронки (2.4). На оборот ной стороне сектора по оси маятника имеется фиксатор в виде кнопки. При нажатии пачьием на кнопку маятник приходит в движение и принимает отвесное положение; при снятии пальца с кнопки пружина прижимает маятник к пластине и он оста- нав тивается.

Для измерения высоты дерева маятниковым высотомером поступают следующим образом:

1. Отмеряют от дерева базис 10 м или 20 м в горизонтальном проложении, причем если высота дерева до 15 м отмеряют 10 м, если более 15 м отмеряют 20 м.

2. Берут высотомер в правую руку так, чтобы большой палец был прижат к выемке под шкалой, а указательный - к визирной трубке.

3. Через глазной диоптр визирной трубки визируют на вершину дерева и одновременно указательным пальцем левой руки нажимают на кнопку.

Когда маятник остановится, а вершина дерева будет в центре кружка, осторожно снимают палец левой руки с кнопки и производят отсчет по соответствующей шкале: при базисе в 10 м пэ 10-метровой шкале, а при базисе 20 м по 20-метровой (2.5) Этот отсчет и есть высота дерева от уровня глаза наблюдателя до вершины. Для получения всей высоты необходимо прибавить к ней высоту до уровня глаз наблюдателя.

Если основание дерева находится ниже глаза наблюдателя, то высота дерева равна сумме отсчетов на вершину и основание дерева. Если основание дерева находится выше наблюдателя, то высота дерева равна разности отсчетов на вершину и на основание.

Маятниковый высотомер зарекомендовал себя,^ак прибор, удобный в работе, имеющий простую конструкцию. Погрешность измерения высоты дерева =п5 %, Для получения более точных результатов необходимо вычислить среднеарифметическое значение из двух-трех измерений.

Высотомер-угломер лесной ВУЛ-1. Высотомер-угломер предназначен для измерения высоты растущих деревьев, измерения расстояния (базиса) и определения угла наклона на местности. Он состоит из корпуса, внутри которого на оси подвешен барабан с балансиром, обеспечивающим постоянное положение шкал по отношению к горизонту (2.6К

На барабан нанесены шкалы дл» измерения высоты деревьев с базисного расстояния 15 и 20 м. На каждой шкале нанесены деления в метрах (с правой стороны) для измерения высоты и деления в градусах (с левой стороны) для измерения угла наклона. Базисное расстояние определяют дальномером с использованием специальной ленты из резинотканевой клеенки.

На крышке корпуса имеется шкала для определения базисного расстояния в метрах с учетом вертикального угла (шкала поправок) и тормозное устройство.

Порядок работы при определении высоты дерева на ровной местности:

выбрать место, с которого хорошо видны его основание и вершина;

закрепить базисную ленту на стволе дерева так, чтобы ее первый штрих находился на уровне глаза;

визируя на базисную лент, через дальномер, добиться, чтобы первый штрих ленты совместился со штрихом 15 м или 20 м; одно деление ленты соответствует 1 м расстояния до дерева;

визировать через окуляр высотомера на вершин\ дерева и одновременно нажать на кнопку тормозного устройства;

когда барабан остановится и визирная линия высотомера совпадет с вершиной дерева, снять палец с кнопки и произвести отсчет, КОТОРЫЙ соответствует высоте дерева от уровня глаза наблюдателя до вершины дерева.

Для получения всей высоты дерева необходимо к полученному отсчету прибавить расстояние до уровня глаза наблюдателя.

При определении высоты дерева на наклонной местности необходимо:

закрепить базисную ленту на стволе дерева; с помощью дальномера определить расстояние до дерева (15 или 20 м);

определить угол наклона в градусах, для чего необходимо визировать на верхний штрих ленты;

определить точное расстояние, с которого будет производиться измерение высоты дерева по шкале, находящейся на корпусе высотомера с учетом вертикального угла;

визировать с этого расстояния на вершину дерева и производить отсчет, затем визировать на основание дерева.

Высотомер-крономер ВК-1 . Высотомер предназначен для измерения высоты дерева, расстояний, угла наклона на местности и радиуса крон растущих деревьев. Он смонтирован в металлическом корпусе и состоит из цвух блоков и логарифмического калькулятора. В одном блоке в герметически закрытой камере установлен подвешенный на оси диск, на котором нанесены шкалы: угломерная и высотомерная. В камере вмонтированы отражательная призма с отсчетным индексом и лупа, являющиеся частью визирной системы. Во втором блоке установлена пенто- призма, с помощью которой высотомер-крономер переключается на вертикальное визирование (2.7).

Ниже визирной системы установлен дальномер, состоящий из биопризмы, объектива и окуляра. Грани биопризмы смещают наблюдаемое изображение шкалы (базисной ленты) во взаимно противоположных направлениях (вверх и вниз), образуя сдвоенное изображение.

Логарифмический калькулятор состоит из двух шкал: подвижной и неподвижной. На подвижной шкале дополнительно нанесена шкала поправок на уклон местности, оцифрованная в градусах. На поверхности корпуса находится маховичок, служащий для переключения призмы при измерении высоты или кроны дерева. При измерении высоты точка на головке маховичка должна находиться против буквы Н на корпусе, при измерении кроны - против буквы R.

Измерение высоты дерева высотомером-крономером выполняют следующим образом:

1. Выбирают место, с которого хорошо видны основание и вершина дерева.

2. Подвешивают базисную ленту на стволе дерева так, чтобы ее середина находилась на высоте глаза наблюдателя.

3. Визируя через дальномер на базисную ленту, производят отсчет расстояния по величине взаимного смещения ее изображения.

4. Визируя на середину базисной ленты, определяют уклон

5. После этого, визируя на вершину и на основание дерева, по высотомерной шкале производят отсчеты.

6. На неподвижной шкале калькулятора отыскивают деление, соответствующее базису, и с ним совмещают начало подвижной шкалы (цифра 10) или при наличии уклона - его значение (оцифровка в градусах).

Затем на подвижной шкале находят деление, соответствующее сумме отсчетов по высотомерной шкале, и против него на неподвижной шкале берут значение зысоты дерева. Среднеквад- ратическая погрешность измерения составляет не более, %: высоты деревьев ±3; расстояний ±1; крон деревьев ±4; уклонов местности ±30".

Высотомер Блюме - Лейсса. Он имеет корпус в виде сектора круга (2.8) и диоптры: глазной и предметный, расположенные на концах верхней грани корпуса высотомера. Ниже предметного диоптра находится спускной крючок, который закрепляет в нужном положении маятник высотомера. На оборотной стороне корпуса прикреплена табличка для внесения поправок в зависимости от крутизны склона. Высота деревьев определяется по четырем дугообразным шкалам при различной величине базиса (15, 20, 30, 40 м).

Отличие высотомера Блюме - Лейсса от высотомера Макарова заключается в том, что для измерения расстояния до дерева используется базисная складная лента с делениями 0, 15, 20, 30 и 40, играющая роль дальномерной рейки. Наблюдатель отходит от измеряемого дерева на такое расстояние, чтобы хорошо видно было вершину и основание дерева, и, передвигаясь назад или вперед на несколько шагов, ищет в оптическом измерителе одно из четырех чисел (15, 20, 30 или 40), находящихся на базисной ленте на том же уровне, что и нулевое деление. Если, например, нулевое деление стоит на одном уровне с делением 30, это означает, что от наблюдателя до дерева 30 метров.

После этого необходимо нажать на кнопку, находящуюся на оборотной стороне высотомера, и освободить маятник. Сначала визируют на вершину дерева и, как только маятник, перестанет качаться, нажимают пальцем на спускной крючок, и маятник остановится на том делении шкалы, которое будет соответствовать высоте дерева от уровня глаза.

Высотомер (в первой половине XX в. - альтиметр , от лат. altus - "высоко", в современном английском языке также altimeter) - прибор, указывающий высоту полета. В настоящее время чаще используется определение высотомер . В авиации используются на барометрический и радиотехнический (иначе радиовысотомер ) способы определения высоты.

В современных радиовысотомерах используются частотный (радиовысотомеры малых высот) и импульсный (радиовысотомеры больших высот) методы измерения высоты. Они показывают истинную высоту полета, что является их преимуществом перед барометрическими высотомерами, так как барометрическая высота, как правило, отличается от истинной.

Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета косвенным путем, измеряя атмосферное давление, которое изменяется с высотой по определенному закону. Барометрический способ измерения высоты связан с рядом ошибок, которые, если их не учитывать, приводят к значительным погрешностям в определении высоты. Несмотря на это барометрические высотомеры ввиду простоты и удобства пользования широко применяются в авиации. Барометрические высотомеры имеют инструментальные, аэродинамические и методические ошибки.

  • Инструментальные ошибки высотомера возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенство изготовления механизмов высотомера, неточность и непостоянство регулировок, износ деталей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера на контрольной установке, заносятся в специальную таблицу и учитываются в полете.
  • Аэродинамические ошибки возникают в результате неточного измерения высотомером атмосферного давления на высоте полета вследствие искажения воздушного потока, обтекающего самолет, особенно при полете на больших скоростях. Величина этих ошибок зависит от скорости и высоты полета, типа приемника, воспринимающего атмосферное давление, и места его расположения. Например, на высоте 5000 м ошибка в измерении давления в 1 мм рт. ст. дает ошибку в высоте, равную 20 м, а на высоте 11 000 м такая же ошибка в измерении давления вызывает ошибку в измерении высоты около 40 м. Аэродинамические ошибки определяются при летных испытаниях самолетов и заносятся в таблицу поправок. Для упрощения учета инструментальных и аэродинамических поправок составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабине самолета.
  • Методические ошибки возникают вследствие несовпадения фактического состояния атмосферы с расчетными данными, положенными в основу для расчета шкалы высотомера. Шкала высотомера рассчитана для условий стандартной атмосферы (МСА) на уровне моря: давление воздуха P0 = 760 мм рт. ст., температура t0 = + 15° С, температурный вертикальный градиент trp = 6,5° на 1000 м высоты. Использование стандартной атмосферы предполагает, что заданной высоте соответствует вполне определенное давление. Но так как в каждом полете действительные условия атмосферы не совпадают с расчетными, то высотомер показывает высоту с ошибками. Барометрическому высотомеру присущи также ошибки вследствие того, что он не учитывает изменения топографического рельефа местности, над которой пролетает самолет. Методические ошибки барометрического высотомера делятся на три группы:
    • Ошибки от изменения атмосферного давления у земли. В полете барометрический высотомер измеряет высоту относительно того уровня, давление которого установлено на шкале давлений высотомера. Он не учитывает изменения давления по маршруту. Обычно атмосферное давление в различных точках земной поверхности в один и тот же момент неодинаково. Перед вылетом стрелки высотомера устанавливают на нуль, при этом шкала давлении высотомера установится на давление аэродрома вылета. Если пилот по маршруту над равнинной местностью будет выдерживать заданную приборную высоту, то истинная высота будет изменяться в зависимости от распределения атмосферного давления у земли. При падении атмосферного давления по маршруту истинная высота будет уменьшаться, при повышении давления увеличиваться. Изменение истинной высоты происходит вследствие изменения давления у земли над пролетаемой местностью относительно давления, установленного на высотомере. Изменение атмосферного давления с высотой характеризуют барометрической ступенью- высотой, соответствующей изменению давления на 1 мм рт. ст. Барометрическая ступень на различных высотах различна. С увеличением высоты барометрическая ступень увеличивается. В практике барометрическую ступень для малых высот берут равной 11м. Следовательно, каждому миллиметру изменения давления у земли соответствует 11,1 м высоты.
    • Ошибки от изменения температуры воздуха. Возникает из-за отклонения температуры у земли от значения температуры стандартной атмосферы. При уменьшении температуры у земли менее 15°С высотомер будет показывать заниженное значение высоты и наоборот. Температурная ошибка может достигать величины, равной 8-12% от измеряемой высоты. Температурную ошибку учитывают на

Если не вдаваться в детали, может показаться, что работа инструмента примитивна и не всегда корректная. На самом деле это далеко не так, ведь очень многое зависит от дополнительных условий - калибровки, настроек в самих часах. Если вы детально изучите все тонкости использования, высотомер может стать относительно надежным источником полезной информации. Конечно, я не претендую на роль эксперта в этой области, но базовые особенности хорошо описаны в инструкциях и википедии. Собрал все объяснения в одном материале на блоге любителей Casio.

GW9400-3ER и 105 метров

Основы работы высотомера - часы получают информацию о высоте над уровнем моря благодаря наличию встроенного датчика атмосферного давления. Сразу хотим подчеркнуть - высоту и атмосферное давление измеряет один датчик , по сути это одни и те же данные, только в разной интерпретации.

с функцией высотомера

Принцип действия барометрического высотомера заключается в измерении атмосферного давления. Все мы знаем, что с увеличением высоты уменьшается текущее атмосферное давление. Этот простой принцип заложен в основу работы прибора, который на самом деле измеряет не высоту а атмосферное давление. Работа высотомера в часах Casio базируется на данных “Международной стандартной атмосферы” (International Standard Atmosphere - ISA), которые предусмотрены Международной организацией гражданской авиации. На рисунке показана зависимость определенной высоты от соответствующего атмосферного давления.

Существует две разновидности представления высоты: абсолютная, которая показывает высоту над уровнем моря и относительная, которая выражает высоту между двумя разными точками. На рисунке 2. наглядно показана разница между этими типами измерений (слева – высота здания, справа – высота над уровнем моря).

Значение высоты измеряется двумя способами: встроенная процедура (над уровнем моря - по умолчанию) или на основе эталонной высоты. В первом случае часы вычисляют высоту на основе данных барометра. Во втором случае берется некий эталон высоты (с помощью карты или другого источника) и высотомер отталкивается от этого значения при дальнейших измерениях.

Предостережения

  • Часы получают данные о высоте на основе текущего атмосферного давления. При изменении давления в одном месте, данные о высоте для этого места могут различаться.
  • Данные о высоте могут быть неточными во время прыжков с парашютом, полетах на самолете, дельтаплане и т.п. (из-за резких скачков давления).

Единицы измерения

  • В зависимости от выбранного часового пояса, часы автоматически определяют единицы измерения.
  • Высота измеряется в метрах или футах.
  • Диапазон значений для высотомера - от -700 до 10000 метров (от -2300 до 32800 футов).
  • Если текущие показатели высоты выходят за рамки вышеописанных значений, на дисплее часов высвечивается пиктограмма “—-”. Данные автоматически обновляются когда показатели войдут в допустимый диапазон измерений.

О работе датчика

  • Перед использованием высотомера нужно выбрать формат отображения высоты и частоту ее обновления.
  • Первый формат отображения высоты подразумевает наличие графика в верхней части электронного циферблата. Этот график обновляется по мере обновления значений высоты.
  • Второй формат вместо графика отображает относительную высоту (разница между текущей высотой и заранее заданной)
  • Интервалов обновления высоты всего два: каждую секунду в течение первых 3 минут, затем каждые 5 секунд в течение часа; каждую секунду в течение первых 3 минут, затем каждые 2 минуты в течение следующих 12 часов.

Для корректного отображения текущей высоты датчик необходимо откалибровать . Известны случаи, когда неверная калибровка датчика пилотами самолета становилась причиной авиакатастрофы при полетах с нулевой видимостью [давно это было]. Обратите внимание, высотомер в салоне самолета будет работать некорректно, т.к. в самолете за счет постоянной циркуляции воздуха, его давление существенно отличается от давления воздуха снаружи.

Калибровка представляет собой процесс коррекции показателей датчика с условно идеальными данными другого прибора/источника.

Чтобы свести к минимуму вероятность ошибки в определении высоты, нужно задать эталонное значение высоты . Его необходимо устанавливать на основе точной информации о высоте, определенной, к примеру, с помощью специальных туристических карт или другого надежного источника.

Процесс калибровки довольно прост: в режиме высотомера зажимаем кнопку E, пока на экране не начнет мигать текущее значение высоты. С помощью кнопок A (+) и C (-) установите эталонное значение высоты с интервалом в 1м (5 футов). После этого можно выйти из режима настройки.

Для всех часов Casio процесс схожий, но если возникли какие-то вопросы или проблемы, загляните в инструкцию к своей модели (или напишите нам, мы обязательно поможем).

Теперь о частоте калибровки. Производитель калибрует все датчики после сборки часов, поэтому сразу после покупки никакая калибровка не требуется. Со временем погрешность измерения может увеличиваться, что влечет за собой неверные показатели. Если вы считаете, что данные датчика неверны или сомневаетесь в их корректности, то процесс калибровки не помешает.

Последовательность действий по измерению высоты

Итак, датчик мы откалибровали, теперь можно приступать к измерениям. Напоминаем, процесс описан для часов GW-9400 (модуль 3410). Для других моделей Casio последовательность действий может быть иной, но принцип остается тем же.

Примечание : в новых моделях часов производитель заявляет о более высокой скорости измерения и улучшенной точности.

  • Входим в режим альтиметра – датчик сработает автоматически и сразу покажет нам текущую высоту. Первые 3 минуты измерения будут происходить каждую секунду. В зависимости от выбранного ранее типа отображения получаем информацию:

  • Можно перезапустить считывание высоты в любое время, нажав кнопку С.
  • На графике изменений высоты отображается разница между предыдущим и текущим измерением.

  • График изменения высоты показывает последние 20 автоматических значений.

  • Обратите внимание, память может хранить до 40 записей о высоте включительно. Если записей будет больше, то из памяти будут удаляться самые старые значения.
  • Чтобы записать данные о высоте в память нужно в режиме альтиметра нажать и удерживать кнопку С в течение 2 секунд. На экране отобразится индикатор REC Hold. После этого отпустите кнопку С. Таким образом вы сохраните запись о текущей высоте, времени и дате создания записи.
  • Чтобы посмотреть сохраненный записи, используйте кнопки A и C.
  • В автоматическом режиме часы сохраняют данные о максимальной высоте, минимальной высоте, общем подъеме и общем снижении. Эти данные обновляются при следующих измерениях.

Вывод

Высотомер в часах касио не меряет высоту линейкой а лишь представляет данные об атмосферном давлении в другом виде. Если вы сомневаетесь в точности датчика, сравните данные часов со специализированной картой. Если информация не отличается существенно - все ок. Если отличается - нужно сделать калибровку.

P.S. Есть что добавить? Пишите в комментариях, добавим к материалу.

Люблю разбираться во всяких тонкостях часов японского производителя. Активно поддерживаю идею "настоящие ударопрочные G-Shock-и должны быть цифровыми", при этом не отказываюсь от ана-диджи. Новости, обзоры, лукбуки - вношу свою лепту в популяризацию часовой продукции Casio в русскоязычном сегменте интернета.

"Барометр - это прибор, с помощью которого в конце 20 века измеряли высоту башен."
(Мировая Энциклопедия, 2495 год)
Сэр Эрнест Резерфорд, президент Королевской Академии и лауреат Нобелевской премии по физике, рассказывал следующую историю, служащую великолепным примером того, что не всегда просто дать единственно правильный ответ на вопрос.
Некоторое время назад коллега обратился ко мне за помошью. Он собирался поставить самую низкую оценку по физике одному из своих студентов, в то время как этот студент утверждал, что заслуживает высшего балла. Оба, преподаватель и студент согласились положиться на суждение третьего лица, незаинтересованного арбитра; выбор пал на меня.
Экзаменационный вопрос гласил: «Объясните, каким образом можно измерить высоту здания с помощью барометра». Ответ студента был таким: «Нужно подняться с барометром на крышу здания, спустить барометр вниз на длинной веревке, а затем втянуть его обратно и измерить длину веревки, которая и покажет точную высоту здания».
Случай был и впрямь сложный, так как ответ был абсолютно полным и верным! С другой стороны, экзамен был по физике, а ответ имел мало общего с применением знаний в этой области.
Я предложил студенту попытаться ответить еще раз. Дав ему шесть минут на подготовку, я предупредил его, что ответ должен демонстрировать знание физических законов. По истечении пяти минут он так и не написал ничего в экзаменационном листе. Я спросил его, сдается ли он, но он заявил, что у него есть несколько решений проблемы, и он просто выбирает лучшее.
Заинтересовавшись, я попросил молодого человека приступить к ответу, не дожидаясь истечения отведенного срока. Новый ответ на вопрос гласил: «Поднимитесь с барометром на крышу и бросьте его вниз, замеряя время падения. Затем, используя формулу L = (a*t^2)/2, вычислите высоту здания».
Тут я спросил моего коллегу, преподавателя, доволен ли он этим ответом. Тот, наконец, сдался, признав ответ удовлетворительным. Однако студент упоминал, что знает несколько ответов, и я попросил его открыть их нам.
«Есть несколько способов измерить высоту здания с помощью барометра», начал студент. «Например, можно выйти на улицу в солнечный день и измерить высоту барометра и его тени, а также измерить длину тени здания. Затем, решив несложную пропорцию, определить высоту самого здания.»
«Неплохо», сказал я. «Есть и другие способы?»
«Да. Есть очень простой способ, который, уверен, вам понравится. Вы берете барометр в руки и поднимаетесь по лестнице, прикладывая барометр к стене и делая отметки. Сосчитав количество этих отметок и умножив его на размер барометра, вы получите высоту здания. Вполне очевидный метод.»
«Если вы хотите более сложный способ», продолжал он, «то привяжите к барометру шнурок и, раскачивая его, как маятник, определите величину гравитации у основания здания и на его крыше. Из разницы между этими величинами, в принципе, можно вычислить высоту здания. В этом же случае, привязав к барометру шнурок, вы можете подняться в вашим маятником на крышу и, раскачивая его, вычислить высоту здания по периоду прецессии.»
«Наконец», заключил он, «среди множества прочих способов решения проблемы лучшим, пожалуй, является такой: возьмите барометр с собой, найдите управляющего зданием и скажите ему: «Господин управляющий, у меня есть замечательный барометр. Он ваш, если вы скажете мне высоту этого здания».
Тут я спросил студента - неужели он действительно не знал общепринятого решения этой задачи. Он признался, что знал, но сказал при этом, что сыт по горло школой и колледжем, где учителя навязывают ученикам свой способ мышления.
Студентом этим был Нильс Бор (1885–1962), датский физик, лауреат Нобелевской премии 1922 г.
Вот возможные решения этой задачи, предложенные им:
1. Измерить время падения барометра с вершины башни. Высота башни однозначно рассчитывается через время и ускорение свободного падения. Данное решение является наиболее традиционным и потому наименее интересным.
2. С помощью барометра, находящегося на одном уровне с основанием башни, пустить солнечный зайчик в глаз наблюдателя, находящегося на ее вершине. Высота башни рассчитывается исходя из угла возвышения солнца над горизонтом, угла наклона барометра и расстояния от барометра до башни.
3. Измерить время всплывания барометра со дна заполненной водой башни. Скорость всплывания барометра измерить в ближайшем бассейне или ведре. В случае, если барометр тяжелее воды, привязать к нему воздушный шарик.
4. Положить барометр на башню. Измерить величину деформации сжатия башни. Высота башни находится через закон Гука.
5. Насыпать кучу барометров такой же высоты, что и башня. Высота башни рассчитывается через диаметр основания кучи и коэффициент осыпания барометров, который можно вычислить, например, с помощью меньшей кучи.
6. Закрепить барометр на вершине башни. Послать кого-нибудь наверх снять показания с барометра. Высота башни рассчитывается исходя из скорости передвижения посланного человека и времени его отсутствия.
7. Натереть барометром шерсть на вершине и у основания башни. Измерить силу взаимного отталкивания вершины и основания. Она будет обратно пропорциональна высоте башни.
8. Вывести башню и барометр в открытый космос. Установить их неподвижно друг относительно друга на фиксированном расстоянии. Измерить время падения барометра на башню. Высота башни находится через массу барометра, время падения, диаметр и плотность башни.
9. Положить башню на землю. Перекатывать барометр от вершины к основанию, считая число оборотов. (Способ, ставший популярным в России под кодовым названием "имени 38 попугаев").
10. Закопать башню в землю. Вынуть башню. Полученную яму заполнить барометрами. Зная диаметр башни и количество барометров, приходящееся на единицу объема, рассчитать высоту башни.
11. Измерить вес барометра на поверхности и на дне ямы, полученной в предыдущем опыте. Разность значений однозначно определит высоту башни.
12. Наклонить башню. Привязать к барометру длинную веревку и спустить его до поверхности земли. Рассчитать высоту башни по расстоянию от места касания барометром земли до башни и углу между башней и веревкой.
13. Поставить башню на барометр, измерить величину деформации барометра. Для расчета высоты башни необходимо также знать ее массу и диаметр.
14. Взять один атом барометра. Положить его на вершину башни. Измерить вероятность нахождения электронов данного атома у подножия башни. Она однозначно определит высоту башни.
15. Продать барометр на рынке. На вырученные деньги купить бутылку виски, с помощью которой узнать у архитектора высоту башни.
16. Нагреть воздух в башне до определенной температуры, предварительно ее загерметизировав. Проделать в башне дырочку, около которой закрепить на пружине барометр. Построить график зависимости натяжения пружины от времени. Проинтегрировать график и, зная диаметр отверстия, найти количество воздуха, вышедшее из башни вследствие теплового расширения. Эта величина будет прямо пропорциональна объему башни. Зная объем и диаметр башни, элементарно находим ее высоту.
17. Измерить с помощью барометра высоту половины башни. Высоту башни вычислить, умножив полученное значение на 2.
18. Привязать к барометру веревку длиной с башню. Использовать полученную конструкцию вместо маятника. Период колебаний этого маятника однозначно определит высоту башни.
19. Выкачать из башни воздух. Закачать его туда снова в строго фиксированном количестве. Измерить барометром давление (!) внутри башни. Оно будет обратно пропорционально объему башни. А по объему высоту мы уже находили.
20. Соединить башню и барометр в электрическую цепь сначала последовательно, а потом параллельно. Зная напряжение, сопротивление барометра, удельное сопротивление башни и измерив в обоих случаях силу тока, рассчитать высоту башни.
21. Положить башню на две опоры. Посередине подвесить барометр. Высота (или в данном случае длина) башни определяется по величине изгиба, возникшего под действием веса барометра.
22. Уравновесить башню и барометр на рычаге. Зная плотность и диаметр башни, плечи рычага и массу барометра, рассчитать высоту башни.
23. Измерить разность потенциальных энергий барометра на вершине и у основания башни. Она будет прямо пропорциональна высоте башни.
24. Посадить внутри башни дерево. Вынуть из корпуса барометра ненужные детали и использовать полученный сосуд для полива дерева. Когда дерево дорастет до вершины башни, спилить его и сжечь. По количеству выделившейся энергии определить высоту башни.
25. Поместить барометр в произвольной точке пространства. Измерить расстояние между барометром и вершиной и между барометром и основанием башни, а также угол между направлением от барометра на вершину и основание. Высоту башни рассчитать по теореме косинусов.
----
Бор, Нильс Хенрик Давид. Цитаты (из Викицитатника)
* Ваша теория безумна, но недостаточно безумна, чтобы быть истинной.
(Сказано Вольфгангу Паули касательно электронного спина.)
* Если квантовая теория не потрясла тебя - ты её ещё не понял.
* Каждое предложение, произносимое мной, должно рассматриваться не как утверждение, а как вопрос.
* Как замечательно, что мы столкнулись с парадоксом. Теперь у нас есть надежда на продвижение!
* Никогда не выражайся чётче, чем способен мыслить.
* Ничто не существует пока оно не измерянно.
* Нет, но мне сказали, что это работает даже если вы не верите в это.
(Когда его спрашивали действительно ли он верит, что подкова над его дверью приносит удачу.)
* Обратным к верному утверждению является ложное утверждение. Однако обратным великой истины может оказаться другая великая истина.
* Очень трудно сделать точный прогноз, особенно о будущем.
* Правду дополняет ясность.
* Перестань указывать Богу, что делать.
(Ответ на известное изречение Эйнштейна: „Бог не играет в кости“. При цитировании иногда добавляют: „…с его костями“)
* Эксперт - это человек, который совершил все возможные ошибки в некотором узком поле.
* Наш язык напоминает мне это мытье посуды. У нас грязная вода и грязные полотенца, и тем не менее мы хотим сделать тарелки и стаканы чистыми. Точно так же и с языком. Мы работаем с неясными понятиями, оперируем логикой, пределы применения которой неизвестны, и при всем при том мы еще хотим внести какую-то ясность в наше понимание природы.